Question

The velocity of a particle (m = 10 mg, q = –4.0 μC) at t =...

The velocity of a particle (m = 10 mg, q = –4.0 μC) at t = 0 is 30 m/s in the positive x direction. If the particle moves in a uniform electric field of 20 N/C in the positive x direction, what is the particle's speed (in m/s) at t = 5.0 s?

Homework Answers

Answer #1

The force acting on the charged particle moving in the uniform electric field is

F =m × a = q E ...................(1)

Given m = 10mg = 10 × 10^-6 kg = 10^-5 kg

q = -4 microcolomb = -4 × 10^-6 Colomb

E = 20 N/C

Substituting the values in equation (1)

(10^-5) a =-4 × 10^-6 × 20

Implies acceleration, a = -8

Since acceleration is the rate of change of velocity

Or dV/dt = -8

Integrating both sides,

V = -8t + Constant........(2)

At t=0, V = 30 m/s.....given

Therefore from equation (2)

30 = 0 + Constant

Or

Constant = 30

Substituting in equation (2)

V = -8t + 30................(3)

Therefore at time t = 5s , The velocity of the particle can be obtained from equation (3)

V = -8×5 + 30

Velocity, V = -10 m/s

= ANSWER

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
- The velocity of a particle (m = 10 mg, q = -4.0 mC) at t...
- The velocity of a particle (m = 10 mg, q = -4.0 mC) at t = 0 is 20 m/s in the positive x direction. If the particle moves in a uniform electric field of 20 N/C in the positive x direction, what is the particle's speed at t = 5.0 s? What is the distance the particle moves in the field?
A particle (q = -4.0 μC, m = 5.0 mg) moves in a uniform magnetic field....
A particle (q = -4.0 μC, m = 5.0 mg) moves in a uniform magnetic field. If the magnetic field strength is B, the speed of the particle is v, and the angle that the particle’s velocity makes with the magnetic field direction is q, in which of the following cases would the magnitude of the particle’s acceleration be the largest? A. v = 2.0 km/s, B = 9.1 mT, q = 90° B. v = 2.0 km/s, B =...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive xx direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   answer is 0,219,0 m/s why is...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.01 T points in the positive z direction. 1. If the net force acting on the particle is 6.25×10^−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   m/s  
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.03 T points in the positive z direction. .If the net force acting on the particle is 6.22×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane?
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1450 N/C points in the positive x direction, and a magnetic field of magnitude 1.23 T points in the positive z direction. If the net force acting on the particle is 6.25×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane.
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1500 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. A)If the net force acting on the particle is 6.21×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. Enter your answers numerically separated by commas.
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.24×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane Find all three components and enter in Vx, Vy, Vz...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a region of uniform electric and magnetic fields. The magnetic field is B=4.00 T in the +z-direction. The electric field is also in the +z-direction and has magnitude E=60.0 N/C. At time t = 0 the particle is on the y-axis at y=+1.00 m and has velocity v = 30.0 m/s in the +x-direction. Neglect gravity. What are the x-, y-, and z-coordinates of the...
A 6.50 −μC particle moves through a region of space where an electric field of magnitude...
A 6.50 −μC particle moves through a region of space where an electric field of magnitude 1400 N/C points in the positive x direction, and a magnetic field of magnitude 1.24 Tpoints in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. Find vx,vy,vz
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT