Question

When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential...

When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential of 2.50 V is required to stop all of the ejected photoelectrons. Determine the (a) maximum kinetic energy and (b) maximum speed of the ejected photoelectrons. (c) Determine the wavelength in nm of the incident light. (The work function for silver is 4.73 eV.)

Homework Answers

Answer #1


work done by stopping potential W = V*q

work done = change in KE = KEf - KEi

V*q = Kf - Kmax


Kf = 0

q = 1.6*10^-19 C

Kmax = V*q

Kmax = 2.5*1.6*10^-19 = 4*10^-19 J

========================

part(b)


kinetic energy K = (1/2)*m*v^2


4*10^-19 = (1/2)*9.11*10^-31*v^2

v = 9.37*10^5 m/s

================

part(c)


from photo electric equation

Eincident = Wo + KEmax

hc/lambda = Wo + KEmax


KEmax = 4*10^-19 J


1 eV = 1.6*10^-19 J


Wo = 4.73 eV = 4.73*1.6*10^-19 J


h = planck's constant = 6.626*10^-34 Js

c = speed of light = 3*10^8 m/s

6.626*10^-34*3*10^8/lambda = (4.73*1.6*10^-19) + 4*10^-19


wavelength lambda = 172 nm <<----ANSWER

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential...
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential of 2.50 V is required to stop all of the ejected photoelectrons. Determine the (a) maximum kinetic energy and (b) maximum speed of the ejected photoelectrons. (c) Determine the wavelength in nm of the incident light. (The work function for silver is 4.73 eV.)
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential...
When monochromatic light of an unknown wavelength falls on a sample of silver, a minimum potential of 2.55 V is required to stop all of the ejected photoelectrons. (The work function for silver is 4.73 eV.) HINT (a) Determine the maximum kinetic energy (in eV) of the ejected photoelectrons.   eV (b) Determine the maximum speed (in m/s) of the ejected photoelectrons.   m/s (c) Determine the wavelength in nm of the incident light.   nm
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K_0 of the photoelectrons when light of wavelength 340 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K_0 =    eV
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface? Use h = 6.63×10?34J?s for Planck's constant and c = 3.00×108m/s for the speed of light and express your answer in electron volts.
The work function of potassium metal is 2.30 eV. Monochromatic light is shined on its surface,...
The work function of potassium metal is 2.30 eV. Monochromatic light is shined on its surface, and photoelectrons with a maximum speed of 5.50E5 m/s are ejected. What is the wavelength of the light? 539 nm 657 nm 393 nm 157 nm 1443 nm
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
6. Light with a wavelength of 600 nm is directed at a metallic surface with a...
6. Light with a wavelength of 600 nm is directed at a metallic surface with a work function of 0.96 eV. Find the max kinetic energy and max speed of the photoelectrons. What is the cutoff potential necessary to stop the photoelectrons?
When a monochromatic ultraviolet light with a wavelength of 254 nm falls onto the surface of...
When a monochromatic ultraviolet light with a wavelength of 254 nm falls onto the surface of a particular metal it causes a photocurrent to flow. A stopping voltage of 2.30 V is required to totally block the photocurrent. a. What is the work function of the material? W = _______ eV b. What is the cutoff wavelength for this metal? λ = ________ nm c. Will light with a wavelength of 523 nm be able to cause a photocurrent from...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in a photoelectric experiment is observed to be 0.850 V. a) What is the work function φ of the metal? (eV) b) What is the maximum kinetic energy of the ejected electrons (in Joules)? c) What is the longest wavelength light that will still allow electrons to escape the metal?(nm)