Question

A red box (on the left) with a mass of 15 kg is attached to a...

A red box (on the left) with a mass of 15 kg is attached to a string that goes over a massless, frictionless pulley and attaches to a green box with a mass of 4 kg. The green box has a second, separate string attached to its bottom which is attached to a blue box with a mass of 5 kg. (a) What is the acceleration of the system? (b) What is the tension in both strings?

Homework Answers

Answer #1


m1 ( red) = 15 kg

m2 ( green ) = 4 kg


m3 ( blue) = 5 kg

for m1


m1*g - T1 = m1*a

T1 = m1*g - m1*a


for m3

T2 - m3*g = m3*a

T2 = m3*g + m3*a

for m2


T1 - T2 - m2*g = m2*a

m1*g - m1*a - m3*g - m3*a - m2*g = m2*a

m1*g - m3*g - m2*g = m1*a + m2*a + m3*a


acceleration a = g*(m1 - m2 - m3)/(m1+m2+m3)


acceleration a = 9.8*(15 - 4 - 5)/(15+4+5) = 2.45 m/s^2


--------------------------

part(b)

tension T1 = m1*g - m1*a = 15*9.8 - 15*2.45 = 110.25 N


tension T2 = m3*g + m3*a = 5*9.8 + 5*2.45 = 61.25 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 18 kg and a block of mass 6 kg are attached by...
A block of mass 18 kg and a block of mass 6 kg are attached by a massless string that does not stretch. The string is passed over a massless, frictionless pulley. The blocks are released. The blocks slide against vertical walls as they move, which results in a frictional force of 25N acting on the heavier block and a frictional force of 14N acting on the lighter block. (a) Determine the magnitude of the acceleration of each block. __________________________m/s2...
An green hoop with mass mh = 2.7 kg and radius Rh = 0.15 m hangs from a string that...
An green hoop with mass mh = 2.7 kg and radius Rh = 0.15 m hangs from a string that goes over a blue solid disk pulley with mass md = 2.1 kg and radius Rd = 0.09 m. The other end of the string is attached to a massless axel through the center of an orange sphere on a flat horizontal surface that rolls without slipping and has mass ms = 3.7 kg and radius Rs = 0.19 m. The system is released from rest. 1. What is magnitude...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley. The pulley has the shape of a uniform solid disk of mass 2.40 kg and diameter 0.420 m. A)After the system is released, find the horizontal tension in the wire. B) After the system is released, find the vertical tension in the wire. C)After the system is released, find the acceleration of...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1)). The pulley has the shape of a uniform solid disk of mass 2.20 kg and diameter 0.520 m .After the system is released, find the horizontal tension in the wire.After the system is released, find the vertical tension in the wire.After the system is released, find the acceleration...
The system shown in the figure below consists of a mass M = 4.1-kg block resting...
The system shown in the figure below consists of a mass M = 4.1-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 2.4-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 4.1 kg acceleration of m...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1) ). The pulley has the shape of a uniform solid disk of mass 2.00 kg and diameter 0.520 m . Part A After the system is released, find the horizontal tension in the wire. Part B After the system is released, find the vertical tension in the wire....
A glider of mass m_1 slides without friction on a horizontal air track. It is attached...
A glider of mass m_1 slides without friction on a horizontal air track. It is attached to an object of mass m_2 by a massless string. The string between them goes over a pulley, a thin cylindrical shell (with massless connecting spokes) with mass M and radius R. The string turns the pulley without slipping or stretching. Find the acceleration of each body, the angular acceleration of the pulley, and the tension in each part of the string. (Warning!!!: DO...
A 4.0 kg box is on a frictionless 35° slope and is connected via a massless...
A 4.0 kg box is on a frictionless 35° slope and is connected via a massless string over a massless, frictionless pulley to a hanging 2.0 kg weight a. What is the tension in the string if the 4.0 kg box is held in place, so that it cannot move? b. If the box is then released, which way will it move on the slope? c. What is the tension in the string once the box begins to move?
A green hoop with mass mh = 2.4 kg and radius Rh = 0.14 m hangs...
A green hoop with mass mh = 2.4 kg and radius Rh = 0.14 m hangs from a string that goes over a blue solid disk pulley with mass md = 2.3 kg and radius Rd = 0.08 m. The other end of the string is attached to an orange block on a flat horizontal surface that slides without friction and has mass m = 3.6 kg (see Figure 1). The system is released from rest. (a) What is magnitude...
A mass m1 = 1 kg on a horizontal table is pulled by a string looped...
A mass m1 = 1 kg on a horizontal table is pulled by a string looped over a massless frictionless pulley and attached to another hanging mass m2. The coefficient of kinetic friction between the table and mass m1 is 0.5 and the coefficient of static friction is 0.6. a) What is the minimum mass m2 that will start both masses moving? b) What is the acceleration of the system with this minimum mass?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT