Question

Two capacitors, one a 4.0 μF capacitor, C1, and the other a 7.0 μF capacitor, C2,...

Two capacitors, one a 4.0 μF capacitor, C1, and the other a 7.0 μF capacitor, C2, are connected in series. If a 90.0 V voltage source is applied to the capacitors, as shown in the figure, find the voltage drop across the 4.0 μF capacitor.​

36 V

54 V

9.0 V

60 V​

Homework Answers

Answer #1

Solution:

Givne C1 and C2 are in series.

Equivalent capacitance = C1 x C2 / C1 + C2

=> C = 28 / 11 uF

Now Q = C * V

=> Q = 28 / 11 * 90 uC

=> Q = 2520 / 11 uC

potential drop across 4.0 uF capacitor

=> V = Q / C1

=> V = 2520 / 11 * 4

=> V = 57.27 V

Note the option is not matching , Acutally is think there should be 6.0 uF capacitor instead of 7.0 uF

Considering we have 6.0 uF capacitor if we solve the quesiton in same way

We will get V = 54 V ( option A as the Right answer)

please comment for Queries.

Please rate thanks.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0...
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0 microF and C3=8.0 microF. This circuit is connected to a battery delivering V=15.0 V. Find charge stored in capacitor C2 in mircoC.
Two capacitors C1 = 4.5 μF, C2 = 19.4 μF are charged individually to V1 =...
Two capacitors C1 = 4.5 μF, C2 = 19.4 μF are charged individually to V1 = 19.7 V, V2 = 7.7 V. The two capacitors are then connected together in parallel with the positive plates together and the negative plates together. - Calculate the final potential difference across the plates of the capacitors once they are connected. - Calculate the amount of charge (absolute value) that flows from one capacitor to the other when the capacitors are connected together. -...
Two capacitors C1 = 5.6 μF, C2 = 15.1 μF are charged individually to V1 =...
Two capacitors C1 = 5.6 μF, C2 = 15.1 μF are charged individually to V1 = 18.0 V, V2 = 5.7 V. The two capacitors are then connected together in parallel with the positive plates together and the negative plates together. a) Calculate the final potential difference across the plates of the capacitors once they are connected. b) Calculate the amount of charge (absolute value) that flows from one capacitor to the other when the capacitors are connected together. c)...
Capacitor C1=4.0 microF is connected in parallel to the series combination of capacitors C2=13.0 microF anf...
Capacitor C1=4.0 microF is connected in parallel to the series combination of capacitors C2=13.0 microF anf C3=14.0 microF. This combination if connected to a battery of V=15.0 V. Find potential difference on capacitor C3.
Consider the circuit shown below where four capacitors, C1=1.3  μF ,  C2=3.7  μF , C3=2.5  μF and C4=1.2  μF are connected...
Consider the circuit shown below where four capacitors, C1=1.3  μF ,  C2=3.7  μF , C3=2.5  μF and C4=1.2  μF are connected to a battery of voltage V=41 V. Determine the voltage on C2. Express your answer using one decimal place in units of Volts.
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have...
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have the same plate area of 3.40 cm2 and plate separation of 2.65 mm. However, the first capacitor C1 is filled with air, while the second capacitor C2 is filled with a dielectric that has a dielectric constant of 3.40. The total charge on the series arrangement is 13.8 pC. (a) What is the battery voltage? V (b) What is the potential difference across each...
Two identical capacitors C1 and C2 are connected in series with a battery with voltage V....
Two identical capacitors C1 and C2 are connected in series with a battery with voltage V. A dielectric is inserted between the plates of C2. A) Does inserting the dielectric increase or decrease the capacitance of C2? Explain. B) Does inserting the dielectric increase or decrease the equivalent capacitance of the two capacitor system? Explain. C) Is there more charge on the capacitors before or after the dielectric is inserted? Explain. D) Which system has a larger potential drop across...
Some charge is placed on a capacitor with C1 = 34 μF so that ∆V =...
Some charge is placed on a capacitor with C1 = 34 μF so that ∆V = 17 V. The capacitor is then attached in parallel to a second capacitor with C2 = 80 μF. What is the voltage across the two capacitors?
A capacitance C1 = 14.6 μF is connected in series with a capacitance C2 = 5.8...
A capacitance C1 = 14.6 μF is connected in series with a capacitance C2 = 5.8 μF, and a potential difference of 150 V is applied across the pair. a. Calculate the equivalent capacitance. b. What is the charge on C2? c. What is the charge on C1? d. What is the potential difference across C2? e. What is the potential difference across C1? (c25p72) Repeat for the same two capacitors but with them now connected in parallel. f. Calculate...
A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a...
A 0.50-μF and a 1.4-μF capacitor (C1 and C2, respectively) are connected in series to a 14-V battery. a) Calculate the potential difference across each capacitor. Express your answers using two significant figures separated by a comma. V1 V2 = b) Calculate the charge on each capacitor. Express your answers using two significant figures separated by a comma. Q1 Q2 = c) Calculate the potential difference across each capacitor assuming the two capacitors are in parallel. Express your answers using...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT