Question

A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t...

A wave on a string is described by the equation
y(x, t) = 2*cos(2 π(x/4m- t /.1 s))
where x is in meters and t is in seconds.
a. Is the wave travelling to the right or to the left? _________
b. What is the wave frequency? __________
c. What is the wavelength? ___________
d. What is the wave speed? _________
e. At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and...
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and x are in meters and t is in seconds. 1) What is the speed of the wave? 0.79 m/s 1.27 m/s 0.2 m/s 4.94 m/s 0.03 m/s 2) What is its wavelength? 0.2 m 0.67 m 7.39 m 5.34 m 1.5 m 3) What is the acceleration of the string in the y direction at x=1.7 m and t=7 seconds? 3.91 m/s2 7.97 m/s2...
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 1.2 m )+t/( 0.30...
A wave on a string is described by y(x,t)=( 4.0 cm )×cos[2π(x/( 1.2 m )+t/( 0.30 s ))] , where x is in m and t is in s . Part B What is the wave speed?    v =     m/s Part C What is the wave frequency?    f =     Hz Part D What is the wave length?    =    m Part E At t = 0.75 s , what is the displacement of the string at x = 0.10 m ?     ...
A wave on a string is described by the equation y = 12 cos(1.57 x -...
A wave on a string is described by the equation y = 12 cos(1.57 x - 6.28 t). The lengths are measured in cm and time in s. Determine; (a) the amplitude, frequency, and the time it takes for the wave repeats itself, (b) the speed of the wave and the distance a peak of the wave travels in 3 T + .5 s. (c) Paint a point on this string. What length does this point move in 2.5 s.
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and...
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and ‘y’ are in meters and ‘t’ is in seconds.(a). Find the transverse velocity and transverse acceleration expression. (b).Determine the amplitude , angular frequency, angular wave number, wavelength, wave speed and direction of the motion.?
A wave on a string has a wave function given by: y (x, t) = (0.300m)...
A wave on a string has a wave function given by: y (x, t) = (0.300m) sin [(4.35 m^-1 ) x + (1.63 s^-1 ) t] where t is expressed in seconds and x in meters. Determine: (10 points) a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave
The equation of a transverse wave traveling along a very long string is y = 4.60...
The equation of a transverse wave traveling along a very long string is y = 4.60 sin(0.0684πx+ 2.07πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 8.64 cm when t = 0.375 s?
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x -...
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x - t). Assume everything is expressed in SI units. a) Find wave amplitude b) Find wave velocity c) Find wave frequency d) Find wavelength
The function y(x,t) = 0.3 sin( 2 π t -2 π x + π /4) represents...
The function y(x,t) = 0.3 sin( 2 π t -2 π x + π /4) represents the vertical position of an element of a taut string upon which a transverse wave travels. This function depends on the horizontal position along the string, x, and time, t. y and x are in units of meters and t is in units of seconds. Do not use symbols in any of your answers below. Only use integers or decimals. a. Determine the angular...