Question

A certain ideal gas undergoes an isovolumetric process that decreases the pressure. Does heat flow into...

A certain ideal gas undergoes an isovolumetric process that decreases the pressure. Does heat flow into or out of the gas during this process? How do you know?

Homework Answers

Answer #1

According to First law of thermodynamics,  

For a isovolumetric process, the volume remains constant, , So,  

Now Internal Energy is a function of Temperature, .... Eqn (1)

The gas follows a isovolumetric process, that is Gay-Lussac law,

Since pressure is decreased, which means,   

So Eqn (1), is -ve,

But , which means Q is also negative, Which means heat is flowing out

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A monatomic gas in a container undergoes an isochoric (or isovolumetric) process. The temperature changes from...
A monatomic gas in a container undergoes an isochoric (or isovolumetric) process. The temperature changes from 300.0[K] to 450.0[K]. (a) If there are 4.00[mol] of gas in the container what is the work done in this process? (b) What is the heat flow into, or out of, the gas during this process?
Thermodynamics.Processes-PV-Diagrams.MS.KC.2: A monoatomic ideal gas undergoes an isother- mal expansion that increases the volume by 50%....
Thermodynamics.Processes-PV-Diagrams.MS.KC.2: A monoatomic ideal gas undergoes an isother- mal expansion that increases the volume by 50%. No gas particles enter or leave the system. Which of the following statements are true concerning this process? (a) The pressure decreases by 1/3. (b) The pressure decreases by 1/2. (c) The change in the internal energy of the gas is positive. (d) The change in the internal energy of the gas is negative. (e) The gas does work on the environment. (f) The...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from...
A piston-cylinder assembly containing 3 kg of an ideal gas undergoes a constant pressure process from an initial volume of 48 m3 to a final volume of 30 m3 . During the process, the piston supplies 1.2 MJ of work to the gas. The gas has a constant specific heat at constant volume of 1.80 kJ/(kg∙K) and a specific gas constant of 1.48 kJ/(kg∙K). Neglect potential and kinetic energy changes. a. Determine the initial specific volume of the gas in...
You are given an ideal gas which undergoes a process where the internal energy U is...
You are given an ideal gas which undergoes a process where the internal energy U is a function of the volume, V according to U = bV^ f , where b and f are known constants. You know the ratio of specific heats, γ. (a) Suppose the internal energy is increase by a finite amount ∆. What work is performed by the gas. (b) What amount of heat is transferred to the gas in the situation (a). (c) What is...
in the first part of two step process heat is allowed to flow out of an...
in the first part of two step process heat is allowed to flow out of an ideal gas at constant volume so that the presure drop from 2.45atm to 1.70atm the gast the expands at constant pressure from a volume of 5.45l to 7.85L where the tempetrture rekbei it original value . a draw a pv -disgram for this process b , calculate the total work done bu the gas process c does heat flow into or out of the...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
(a) During an isothermal process, 5.00 J of heat is removed from an ideal gas. Determine...
(a) During an isothermal process, 5.00 J of heat is removed from an ideal gas. Determine the work done in the process and the internal energy change. (b) If the 300 J of work is done in compressing a gas adiabatically, determine the change in internal energy of the gas and amount of heat removed. (c) In an isochoric process, the internal energy of a system decreases by 50.0 J. Determine the work done in the process and the amount...
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i....
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i. Isovolumetric cooling from state 1 (T1 and P1) to State 2 (T2 and P2); ii. Isothermal expansion from state 2 (T2 and P2) to state 3 (T2 and P3); iii. Isovolumetric heating from state 3 (T2 and P3) back to state 4 (T4 and P4); and iv. Adiabatic compression from state 4 (T4 and P4) to state 1 (T1 and P1). We know that...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas while the piston remains locked in place until the absolute temperature of the gas doubles. 1. The pressure of the gas a. doubles b. stays the same c. drops in half 2. The work done by the surroundings on the gas is a. positive b. negative c. zero 3. The thermal energy of the gas a. doubles b. stays the same c. drops in...
3 moles of an ideal gas is originally at a pressure of 100,000 Pa at 128oC....
3 moles of an ideal gas is originally at a pressure of 100,000 Pa at 128oC. The pressure is increased to 150000 Pa via an isovolumetric process. Then the gas is compressed via an isobaric process to a volume of .04 m3. a. Draw the PV curve precisely for this process. Calculate the endpoints. Be sure to indicate direction. b. Find the work done on the gas.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT