Question

An infinite line of charge with linear density λ1 = 7.9 μC/m is positioned along the...

An infinite line of charge with linear density λ1 = 7.9 μC/m is positioned along the axis of a thick insulating shell of inner radius a = 2.6 cm and outer radius b = 4.5 cm. The insulating shell is uniformly charged with a volume density of ρ = -658 μC/m3.

1) What is λ2, the linear charge density of the insulating shell?

Homework Answers

Answer #2

Solution:

The shell is non conducting or made up of insulating material, thus, charge on shell will uniformly distribute in it's entire volume. Also, there is no charge redistribution occur on shell due to the line charge present at it's axis.

Thus,

Volume charge density = total charge / volume of the shell

\

Similarly, linear charge density = Total charge / length of the shell

Comparing above two we get,

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An infinitely long solid insulating cylinder of radius a = 4.3 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 4.3 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 29 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 10.1 cm, and outer radius c = 12.1 cm. The conducting shell has a linear charge density λ = -0.34μC/m. What is V(P) – V(R), the potential difference between points...
An infinitely long solid insulating cylinder of radius a = 2 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 2 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 27 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.8 cm, and outer radius c = 17.8 cm. The conducting shell has a linear charge density λ = -0.37μC/m. 1) What is Ey(R), the y-component of the electric field...
An infinite line of charge with charge density λ1 = 1.4 μC/cm is aligned with the...
An infinite line of charge with charge density λ1 = 1.4 μC/cm is aligned with the y-axis as shown. 1)What is Ex(P), the value of the x-component of the electric field produced by by the line of charge at point P which is located at (x,y) = (a,0), where a = 8.2 cm? 2)What is Ey(P), the value of the y-component of the electric field produced by by the line of charge at point P which is located at (x,y)...
A charge of uniform linear density 2.12 nC/m is distributed along a long, thin, nonconducting rod....
A charge of uniform linear density 2.12 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell with an inner radius of 6.47 cm and an outer radius of 12.0 cm. If the net charge on the shell is zero, a) what is the surface charge density on the inner surface of the shell? b) What is the surface charge density on the outer surface of the shell?
A solid insulating sphere of radius a = 5 cm is fixed at the origin of...
A solid insulating sphere of radius a = 5 cm is fixed at the origin of a co-ordinate system as shown. The sphere is uniformly charged with a charge density ρ = -244 μC/m3. Concentric with the sphere is an uncharged spherical conducting shell of inner radius b = 13 cm, and outer radius c = 15 cm. 1)What is Ex(P), the x-component of the electric field at point P, located a distance d = 32 cm from the origin...
An infiinitely long solid conducting cylindrical shell of radius a = 4.6 cm and negligible thickness...
An infiinitely long solid conducting cylindrical shell of radius a = 4.6 cm and negligible thickness is positioned with its symmetry axis along the z-axis as shown. The shell is charged, having a linear charge density ?inner = -0.52 ?C/m. Concentric with the shell is another cylindrical conducting shell of inner radius b = 10.6 cm, and outer radius c = 13.6 cm. This conducting shell has a linear charge density ? outer = 0.52?C/m. 2.)What is V(c) – V(a),...
An infinite line of positive charge lies along the y axis, with charge density λ =...
An infinite line of positive charge lies along the y axis, with charge density λ = 2.30 μC/m. A dipole is placed with its center along the x axis at x = 28.0 cm. The dipole consists of two charges ±10.0 μC separated by 2.00 cm. The axis of the dipole makes an angle of 45.0° with the x axis, and the positive charge is farther from the line of charge than the negative charge. Find the net force exerted...
A small Styrofoam bead with a charge of −60.0 nC is at the center of an...
A small Styrofoam bead with a charge of −60.0 nC is at the center of an insulating plastic spherical shell with an inner radius of 20.0 cm and an outer radius of 28.0 cm. The plastic material of the spherical shell is charged, with a uniform volume charge density of −1.85 µC/m3. A proton moves in a circular orbit just outside the spherical shell. What is the speed of the proton (in m/s)?
An infiinitely long solid conducting cylindrical shell of radius a = 2.2 cm and negligible thickness...
An infiinitely long solid conducting cylindrical shell of radius a = 2.2 cm and negligible thickness is positioned with its symmetry axis along the z-axis as shown. The shell is charged, having a linear charge density λinner = -0.34 μC/m. Concentric with the shell is another cylindrical conducting shell of inner radius b = 13.8 cm, and outer radius c = 15.8 cm. This conducting shell has a linear charge density λ outer = 0.34μC/m. 1) What is Ex(P), the...
(a) A small plastic bead with a charge of −60.0 nC is at the center of...
(a) A small plastic bead with a charge of −60.0 nC is at the center of an insulating rubber spherical shell with an inner radius of 20.0 cm and an outer radius of 32.0 cm. The rubber material of the spherical shell is charged, with a uniform volume charge density of −3.95 µC/m3. A proton moves in a circular orbit just outside the spherical shell. What is the speed of the proton (in m/s)? (b) What If? Suppose the spherical...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT