Question

Three charges, each of charge 5.0 ""C are located at the vertices of an equilateral triangle...

Three charges, each of charge 5.0 ""C are located at the vertices of an equilateral triangle whose sides are 10 cm in length. a) What is the total force, magnitude and direction, on charge I? b) What is-the total potential energy of the three charges? c) Charges 2 and 3 remain fixed, but charge one is now allowed to move. If it starts from rest, what i.s its velocity when it is very far away from charges 2 and 3? Charge 1 has a mass of 10 g.

Homework Answers

Answer #1

given

three charges

q1 = q2 = q3 = q = 5 C, at vertices of an equilateral triangle

sides length, l = 0.1 m

a. so for the charge onthe top most vertex

from symmetry the force is in upward direction

magnitude of force = F = 2*kq^2*cos(30)/l^2

F = 2*8.98*10^9*25*cos(30)/0.1^2 = 3.888454*10^13 N

b. total potential energy = U

U = 3kq^2/l = 673.5*10^10 J

c. for m = 10 g

from conservation of energy

initial PE = final PE + final KE

2kq^2/l = 0.5mv^2

2*8.98*10^9*25/0.1 = 0.5*10*v^2/1000

v = 0.2996664*10^8 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three equal point charges, each with charge 1.05 ?C , are placed at the vertices of...
Three equal point charges, each with charge 1.05 ?C , are placed at the vertices of an equilateral triangle whose sides are of length 0.650 m . What is the electric potential energy U of the system? (Take as zero the potential energy of the three charges when they are infinitely far apart.)
Three equal charges of 5.0x10^-6 are placed at the vertices of an equilateral triangle with sides...
Three equal charges of 5.0x10^-6 are placed at the vertices of an equilateral triangle with sides of 12cm. a) find the net electric force on each of the charges, state the final direction relative to the sides of the triangle b) find the total electric potential at the midpoint of the side between charges 2 and 3
2 charges, 21.44 µC each, are located at two vertices B & C of an equilateral...
2 charges, 21.44 µC each, are located at two vertices B & C of an equilateral triangle ABC with sides 2 cm each. Another charge q is located at point A. Calculate q in micro Coulomb so that net POTENTIAL at the mid point of BC will be ZERO.
2 charges, 14.34 µC each, are located at two vertices B & C of an equilateral...
2 charges, 14.34 µC each, are located at two vertices B & C of an equilateral triangle ABC with sides 2 cm each. Another charge q is located at point A. Calculate q in micro Coulomb so that net POTENTIAL at the mid point of BC will be ZERO.
Three charged particles are located at the corners of an equilateral triangle as shown in the...
Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.80 µC, and L = 0.790 m). Calculate the total electric force on the 7.00-µC charge. magnitude N direction ° (counterclockwise from the +x axis) Three charged particles lie in the x y coordinate plane at the vertices of an equilateral triangle with side length L. Positive charge q is at the origin. A charge of 7.00 µC is...
Three charges of magnitude 5uC are placed at the corner of an equilateral triangle. The top...
Three charges of magnitude 5uC are placed at the corner of an equilateral triangle. The top charge is negative and the bottom two charges are positive. The sides of the triangle are d= 6.4x10^-4 m. A) What is the magnitude of the force acting on the top charge? B) What is the direction of the force acting on the top charge? EXPLAIN:
Three identical point charges are located at the corners of an equilateral triangle that is 0.3m...
Three identical point charges are located at the corners of an equilateral triangle that is 0.3m on each side. If each charge is +20μC, than the magnitude of the net force (in N) on one of the charges due to the other two is..
Two identical charges (+5.0 C each) are placed at the bottom corners of an equilateral triangle,...
Two identical charges (+5.0 C each) are placed at the bottom corners of an equilateral triangle, as shown below. If the length of one side is 3.0 m, find the magnitude of the net force on a -12 C placed at the at the empty top corner.
Three charged particles are placed at each of three corners of an equilateral triangle whose sides...
Three charged particles are placed at each of three corners of an equilateral triangle whose sides are of length 2.0 cm . Two of the particles have a negative charge: q1= -6.1 nC and q2 = -12.2 nC . The remaining particle has a positive charge, q3 = 8.0 nC. What is the net electric force acting on particle 3 due to particle 1 and particle 2? Find the net force ΣF⃗ 3 acting on particle 3 due to the...
Three equal 2.00-μCμC point charges are placed at the corners of an equilateral triangle whose sides...
Three equal 2.00-μCμC point charges are placed at the corners of an equilateral triangle whose sides are 0.400 mm long. What is the potential energy of the system? (Take as zero the potential energy of the three charges when they are infinitely far apart.) U= J
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT