Question

A solenoid of length 40cm40cm has 200200 turns of radius 2.8cm2.8cm. An outer coil with 1414...

A solenoid of length 40cm40cm has 200200 turns of radius 2.8cm2.8cm. An outer coil with 1414 turns of radius 5.2cm5.2cm is placed around the solenoid. The axes of the coil and solenoid coincide. Find the emf induced in the coil if the current in the solenoid varies according to I=5.4sin(110πt)AI=5.4sin(110πt)A.

____ANS_____cos(110πt)mV

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solenoid of lenght 35 cm has 380 turns of radius 2.6 cm. A tightly wound...
A solenoid of lenght 35 cm has 380 turns of radius 2.6 cm. A tightly wound coil with 16 turns of radius 4.8 cm is placed around the solenoid. The axes of the coil and solenoid coincide. Find the emf induced in the coil if the current in the solenoid varies according to I=5.4sin(100πt) A.
A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5*10^-3. The...
A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5*10^-3. The solenoid is 0.50 m long and has 500 turns. The current in the solenoid is given by the function: I(t)=3t-5(A). (a) What is the induced emf in the coil? (b) The outer coil is replaced by a coil of 40 turns whose radius is three times that of the solenoid. What is the induced emf in this coil?
Problem 7: A coil with 200 turns, radius 10cm and resistance 30Ω surrounds a solenoid with...
Problem 7: A coil with 200 turns, radius 10cm and resistance 30Ω surrounds a solenoid with 2000 turns and radius 8cm. The length of the solenoid is 5cm. The current is the solenoid changes at a constant rate from I=0 to I=4A in 0.4s. Determine the induced current in the coil.
A 400 turn solenoid with a length of 20 cm and a radius of 3.0 cm...
A 400 turn solenoid with a length of 20 cm and a radius of 3.0 cm carries a current of 3.0 A. A second coil of four turns is wrapped tightly about this solenoid so that it can be considered to have the same radius as the solenoid. Find the following when the current in the solenoid increases to 5.0 A in a period of 0.90 s. (a) the change in the magnetic flux through the coil _______T·m2 (b) the...
A 85-turn circular coil has diameter 4.2 cm and resistance 2.7 Ω . This coil is...
A 85-turn circular coil has diameter 4.2 cm and resistance 2.7 Ω . This coil is placed inside a solenoid, with coil and solenoid axes aligned. The solenoid has 4800 turns of wire and is 25 cm long. If the solenoid current increases steadily from 0 to 10 A in 2.7 s , find the induced emf in the coil.
A long solenoid has n = 390 turns per meter and carries a current given by...
A long solenoid has n = 390 turns per meter and carries a current given by I = 29.0(1 − e−1.60t ), where I is in amperes and t is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R = 6.00 cm and consists of a total of N = 250 turns of fine wire (see figure below). What emf is induced in the coil by the changing current? (Use the...
1. A long, current-carrying solenoid with an air core has 1650 turns per meter of length...
1. A long, current-carrying solenoid with an air core has 1650 turns per meter of length and a radius of 0.0220 m. A coil of 100 turns is wrapped tightly around the outside of the solenoid, so it has virtually the same radius as the solenoid. What is the mutual inductance of this system? 2. A generator uses a coil that has 360 turns and a 0.53-T magnetic field. The frequency of this generator is 60.0 Hz, and its emf...
A 310 turn solenoid with a length of 23.0 cm and a radius of 1.60 cm...
A 310 turn solenoid with a length of 23.0 cm and a radius of 1.60 cm carries a current of 1.85 A. A second coil of four turns is wrapped tightly around this solenoid, so it can be considered to have the same radius as the solenoid. The current in the 310 turn solenoid increases steadily to 5.00 A in 0.900 s. (a) Use Ampere's law to calculate the initial magnetic field in the middle of the 310 turn solenoid....
A solenoidal coil with 30 turns of wire is wound tightly around another coil with 300...
A solenoidal coil with 30 turns of wire is wound tightly around another coil with 300 turns. The inner solenoid is 25.0 cm long and has a diameter of 2.20 cm . At a certain time, the current in the inner solenoid is 0.150 A and is increasing at a rate of 1700 A/s . PART A For this time, calculate the average magnetic flux through each turn of the inner solenoid. PART B For this time, calculate the mutual...
In the figure a 140-turn coil of radius 5.00 cm and resistance 2.00 Ω is placed...
In the figure a 140-turn coil of radius 5.00 cm and resistance 2.00 Ω is placed around a smaller diameter solenoid (d = 3.20 cm). The long solenoid in the figure has 240 turns per centimeter and carries a current of 1.60 A. The current in the solenoid is reduced to zero and then increased to -1.60 A in a time of 4.00×10-2s. What is the magnitude of the induced current in the outer coil while the solenoid current is...