Question

A spring mass harmonic oscillator consists of a 0.2kg mass
sphere connected vertically with a spring of negligible mass and
force constant of 6kN / m. The spring is released from rest 3cm
from the equilibrium position. Calculate:

(a) The energy of the spring,

(b) The potential energy a when the compression of the spring is
1/3 of the amplitude,

(c) Kinetic energy at this time.

Answer #1

Find this solution .if any issue with that don't forget to write in
comment section.I will rectify them as soon as possible.

If you find the solution helpful and kindly RATE THE ANSWER it
would be appreciated.

Your rating is important to me.

Thanks for asking..

A simple harmonic oscillator consists of a mass of 100g attached
to a constant spring is 10^4 dynas/cm. At time t=0, the mass is
about 3 cm from the equilibrium point and with an initial velocity
of 5cm/s, both in the positive direction.A dissipative force is now
added. Assume that you start moving from rest at the maximum
amplitude position, and after oscillating for 10 s, your maximum
amplitude is reduced to half of the initial value. Calculate:
A- dissipation...

A simple harmonic oscillator consists of a block of mass 3.70 kg
attached to a spring of spring constant 410 N/m. When t = 1.60 s,
the position and velocity of the block are x = 0.102 m and v =
3.050 m/s. (a) What is the amplitude of the oscillations? What were
the (b) position and (c) velocity of the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 3.00 kg
attached to a spring of spring constant 110 N/m. When t =
2.30 s, the position and velocity of the block are x =
0.127 m and v = 3.580 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 2.90 kg
attached to a spring of spring constant 280 N/m. When t =
2.20 s, the position and velocity of the block are x =
0.189 m and v = 3.000 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 1.70 kg
attached to a spring of spring constant 340 N/m. When t =
0.840 s, the position and velocity of the block are x =
0.101 m and v = 3.100 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 3.30 kg
attached to a spring of spring constant 440 N/m. When t =
1.30 s, the position and velocity of the block are x =
0.154 m and v = 3.540 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 1.80 kg
attached to a spring of spring constant 360 N/m. When t = 0.520 s,
the position and velocity of the block are x = 0.200 m and v =
4.420 m/s. (a) What is the amplitude of the oscillations? What were
the (b) position and (c) velocity of the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass
2.60
kg attached to a spring of spring constant
350
N/m. When
t
=
2.20
s, the position and velocity of the block are
x
=
0.175
m and
v
=
3.420
m/s.
(a)
What is the amplitude of the oscillations? What were the
(b)
position and
(c)
velocity of the block at
t
= 0 s?

A simple harmonic oscillator consists of a block of mass 4.50 kg
attached to a spring of spring constant 210 N/m. When t = 1.90 s,
the position and velocity of the block are x = 0.143 m and v =
3.870 m/s. (a) What is the amplitude of the oscillations? What were
the (b) position and (c) velocity of the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 1.30 kg
attached to a spring of spring constant 490 N/m. When t=
0.500 s, the position and velocity of the block are x =
0.155 m and v = 3.510 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 48 minutes ago

asked 55 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago