Question

In a certain series RLC circuit, Irms = 9.00 A, ΔVrms = 245 V, and the...

In a certain series RLC circuit, Irms = 9.00 A, ΔVrms = 245 V, and the current leads the voltage by 34.0°.

(a) What is the total resistance of the circuit?
Ω

(b) Calculate the reactance of the circuit (XLXC).
Ω

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A series RLC circuit has resistance R = 18.0 Ω, inductive reactance XL = 34.0 Ω,...
A series RLC circuit has resistance R = 18.0 Ω, inductive reactance XL = 34.0 Ω, and capacitive reactance XC = 22.0 Ω. If the maximum voltage across the resistor is ΔVR = 115 V, find the maximum voltage across the inductor and the capacitor. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) HINT (a) the maximum voltage across the inductor (in V) V (b) the maximum voltage...
The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25...
The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25 H, and C = 198 µF. The applied AC voltage has a frequency of f = 60 Hz and a voltage of Δv = 120 V. 1-Find the inductive reactance, capacitive reactance, and impedance. XL = ........ Ω XC = ........ Ω Z = ......... Ω 2-Find the phase difference between current and voltage............. ° 3-Find the voltages ΔvR, ΔvL, and ΔvC. ΔvR =...
Now Tiva and Graciela try a problem from the book. The RLC series circuit illustrated in...
Now Tiva and Graciela try a problem from the book. The RLC series circuit illustrated in the simulation has R = 1.2 Ω, L = 1.02 H, and C = 183 µF. The applied AC voltage has a frequency of f = 60 Hz and a voltage of Δv = 120 V. Find the inductive reactance, capacitive reactance, and impedance. XL =____ Ω XC =____ Ω Z =____ Ω Find the phase difference between current and voltage. ° Find the...
A generator with rms voltage of rms = 120 V drives an RLC circuit at frequency...
A generator with rms voltage of rms = 120 V drives an RLC circuit at frequency f = 60 Hz. The load resistance R and reactance values of the inductor L and the capacitor C of the circuit are given by R = 50 , XL = 50 , XC = 150 , respectively What is the impedance of the circuit? What is the peak current amplitude in the circuit? What is the phase angle  of the circuit? The...
1. For a particular RLC series circuit, the capacitive reactance is 4.65 Ω, the inductive reactance...
1. For a particular RLC series circuit, the capacitive reactance is 4.65 Ω, the inductive reactance is 23.5 Ω, and the maximum voltage across the 84.9 Ω resistor is 34.9 V. What is the maximum voltage across the circuit? please answer both exercise not only one this is 2 essential questions 2. Consider a series RLC circuit where the resistance ?=447 Ω , the capacitance ?=3.25 μF , and the inductance ?=85.0 mH . What is the maximum current ?max  when...
In a series circuit, suppose R=230Ω, L=370mH, C=0.75μF, V=85V, and ω=4500rad/s. Find the reactance XL. Find...
In a series circuit, suppose R=230Ω, L=370mH, C=0.75μF, V=85V, and ω=4500rad/s. Find the reactance XL. Find the reactance XC. Find the impedance Z. Find the current amplitude I. Find the phase angle ϕ. Find the voltage amplitude across the resistor. Find the voltage amplitude across the inductor. Find the voltage amplitude across the capacitor.
An RLC series circuit has a 1.00 kΩ resistor, a 168 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 168 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance at 491 Hz. ______ Ω (b) If the voltage source has Vrms = 408 V, what is Irms? ______ mA (c) What is the resonant frequency of the circuit? ______ kHz (d) What is Irms at resonance? ______ mA
An RLC series circuit has a 1.00 kΩ resistor, a 145 mH inductor, and a 25.0...
An RLC series circuit has a 1.00 kΩ resistor, a 145 mH inductor, and a 25.0 nF capacitor. (a) Find the circuit's impedance (in Ω) at 475 Hz. Incorrect: Your answer is incorrect. Ω (b) Find the circuit's impedance (in Ω) at 7.50 kHz. Ω (c) If the voltage source has Vrms = 408 V, what is Irms (in mA) at each frequency? mA (at 475 Hz) mA (at 7.50 kHz) (d) What is the resonant frequency (in kHz) of...
An RLC series circuit has a 2.25 Ω resistor, a 85 μH inductor, and a 72.5...
An RLC series circuit has a 2.25 Ω resistor, a 85 μH inductor, and a 72.5 μF capacitor. A) Find the circuit’s impedance, in ohms, at 135 Hz. (b) Find the circuit’s impedance, in ohms, at 2.5 kHz. (c) If the voltage source supplies an rms voltage of 5.58 V, what is the circuit’s rms current, in amperes, at a frequency of 135 Hz? (d) If the voltage source supplies an rms voltage of 5.58 V, what is the circuit’s...
A sinusoidal voltage Δv = (90.0 V)sin(160t) is applied to a series RLC circuit with L...
A sinusoidal voltage Δv = (90.0 V)sin(160t) is applied to a series RLC circuit with L = 30.0 mH, C = 110.0 μF, and R = 36.0 Ω. (a) What is the impedance of the circuit? (b) What is the maximum current in the circuit?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT