Question

An ideal gas is brought through an isothermal compression process. The 2.00 moles of gas go...

An ideal gas is brought through an isothermal compression process. The 2.00 moles of gas go from having an initial volume of 219.8 cm3 to 120.5 cm3. If 2182 cal are released by the gas during this process, what are the temperature T of the gas and the final pressure pf?

Homework Answers

Answer #1

First Law:

ΔU = ΔQ + ΔW

where ΔU is the increase in internal energy, ΔQ the increase in heat ( i.e. the heat added to the system) and ΔW the work done on the system.

For an ideal gas, U is a function only of temperature. Therefore for an isothermal process ΔU=0. Hence ΔW = -ΔQ.

The work done ON the system in an expansion is

ΔW = - ∫ p dV = -nRT ln(Vf/Vi)

where of course we used p V = n R T to evaluate the integral.

Therefore we obtained

ΔQ = nRT ln(Vf/Vi)

T = ΔQ / (n R ln(Vf/Vi) )

Here this calculates to

T = - 2182J / ( 2.00 mol * 8.31 J/(mol K) * ln(120.5/219.8) )

= 218.42 K


Knowing T, pf follows from

pf= nRT/Vf.

= 2.00mol * 8.31J/(mol K) * 218.4K / (120.5*10^-6 m^3)

= 3.0122*10^7 N/m^2

= 3.0122*10^7 Pa

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal gas is brought through an isothermal compression process. The 3.00 mol3.00 mol of gas...
An ideal gas is brought through an isothermal compression process. The 3.00 mol3.00 mol of gas goes from having an initial volume of 240.7 cm3240.7 cm3 to 104.6 cm3.104.6 cm3. If 2.210×103 cal2.210×103 cal is released by the gas during this process, what are the temperature ?T of the gas and the final pressure ?f?pf? The gas constant is ?=8.31 J/mol⋅K,R=8.31 J/mol⋅K, and there are 4.19 J/cal.4.19 J/cal. ?=T= K ?
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 259.4×10−6 m3 to a final volume of 110.6×10−6 m3 . If 8070 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas? ?= K ?f= Pa
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure Pi = 2.03 ✕ 105 Pa, initial volume Vi = 1.00 ✕ 10−2 m3, and initial temperature Ti = 128 K. (a) What is the work done on the gas during a constant-pressure compression, after which the final volume of the gas is 2.50 L? J (b) What is the work done on the gas during an isothermal compression, after which the final pressure...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature of 330 K and an initial pressure of three times the atmospheric pressure. The gas is taken through the following thermodynamic cycle: 1.- The gas is expanded isobarically (constant pressure) to Vf = 2.5∙Vi. 2.- The pressure of the gas is decreased isochorically (constant volume) to half of the initial value. 3.- The gas is compressed isobarically back to its initial volume. 4.- The...
A mole of an ideal monatomic gas is taken through a 3-process cycle. The gas was...
A mole of an ideal monatomic gas is taken through a 3-process cycle. The gas was initially at state a, with a volume of 370 cm3 and pressure 6.74 MPa. It then goes to state b through an isobaric process, before going to state c through an isochoric process. When it is at state c, it has a volume of 800 cm3. Once it is at state c, it can undergo an isothermal process to return to state a. Draw...
In class we discussed a reversible, isothermal compression of an ideal gas. The initial point (1)...
In class we discussed a reversible, isothermal compression of an ideal gas. The initial point (1) is an ideal gas in equilibrium at pressure 1 (P1), volume 1 (V1) and temperature (T), and the final point (2) is an ideal gas in equilibrium at pressure 2 (P2), volume 2 (V2) and temperature (T), where V2 d) For each differential step, the change in entropy is given by dS=qrev/T =!!!"#! . Since T is constant , this express ion can be...
Solve the following: a) Calculate ΔU for the irreversible isothermal compression of 1 mole of ideal...
Solve the following: a) Calculate ΔU for the irreversible isothermal compression of 1 mole of ideal gas at 290 K from an initial pressure of 3.2 KPa to a final pressure of 46 kPa by an constant external pressure of 46 kPa. Give your answer in kilojoules. b) Consider a reversible isothermal expansion (or compression) of 4.0 mole(s) of an ideal gas at 28°C from 6.5 atm to 3.0 atm. Calculate the amount of heat transferred to the system in...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm...
4. Three moles of a monatomic ideal gas are initially at a pressure of 1.00 atm and a temperature of 20.0OC. The gas is compressed adiabatically to a final pressure of 5.00 atm. Find: (a) the initial volume of the gas; (b) the final volume of the gas; (c) the final temperature of the gas; (d) the work done by the gas during the compression. Answers: (a) 72.1 L; (b) 27.5 L; (c) 285 OC; (d) -97.8 atm-L Please show...
3 moles of a monoatomic ideal gas with Cv=(32)RT occupies a volume of 3.2L at a...
3 moles of a monoatomic ideal gas with Cv=(32)RT occupies a volume of 3.2L at a pressure of 1.9atm at point A. The gas is carried through a cycle consisting of three processes: 1. The gas is heated at constant pressure until its volume is 4.4L at point B. 2. The gas is cooled at constant volume until the pressure decreases to 1.2atm (C). 3. The gas undergoes an isothermal compression back to point A. Find W for the isochoric...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT