Question

In the figure, a conducting rod of length L = 33.0 cm moves in a magnetic...

In the figure, a conducting rod of length L = 33.0 cm moves in a magnetic field B? of magnitude 0.550 T directed into the plane of the figure. The rod moves with speed v = 4.00 m/s in the direction shown.

1. When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod?  

2.What is the magnitude Vba of the potential difference between the ends of the rod?

3.What is the magnitude E of the motional emf induced in the rod?

Homework Answers

Answer #1

1)

when the rod is in motion charges experience magnetic force in presence of magnetic field and  
according to Force(magnetic) = q*[cross product of velocity and field]
if velocity is on -ve y-axis and field inside the plane then by Right hand Screw rule positive charges experience force towards point P and negative charges accumulate at point A and hence naturally their is attractive coulombic force between charges so in steady condition these forces balance each other and Hence
q*v*B = q*E
E = v*B
E = 4*0.550 = 2.2V

2)

emf V = E*d
d = 33cm = 0.33m
V = 2.2*0.33
V = 0.726V

3)

E = v*B
E = 4*0.550 = 2.2V

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the figure, a conducting rod of length L = 35.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 35.0 cm moves in a magnetic field B?  of magnitude 0.490 T directed into the plane of the figure. The rod moves with speed v = 6.00 m/s in the direction shown. When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod? What is the magnitude Vba of the potential difference between the ends of the rod? What is the...
In the figure, a conducting rod of length L = 27.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 27.0 cm moves in a magnetic field B of magnitude 0.350 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. (Figure 1) 1.When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod? Express your answer in volts per meter to at least three significant figures. 2. What...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength...
Consider a conducting rod of length 2.50 m immersed in a uniform magnetic field with strength 4.00 T and oriented as shown in the figure. Assume that this rod is part of a closed conducting loop and is free to move. If this rod moves with speed 4.00 m/s in the +? − direction, what is the magnitude of the induced emf?
A conducting rod spans a gap of length L = 0.23 m and acts as the...
A conducting rod spans a gap of length L = 0.23 m and acts as the fourth side of a rectangular conducting loop, as shown in the figure. A constant magnetic field B = 0.55 T pointing into the paper is in the region. The rod is moving under an external force with an acceleration a = At2, where A = 4.5 m/s4. The resistance in the wire is R = 145 Ω. a. Express the magnitude of the magnetic...
A conducting bar of length 2.0 m moves on two horizontal frictionless rails with a resistor...
A conducting bar of length 2.0 m moves on two horizontal frictionless rails with a resistor that is connected at the left ends between the two rails. A constant force of magnitude 1.0 N moves the bar at a uniform speed of 2.0 m/s to the right through a magnetic field-B that is directed into the page. Draw the diagram. If the resistor in the loop is 8.0 ohms, what is the direction and magnitude of the induced current in...
As shown in the figure below, a metal rod is pulled to the right at constant...
As shown in the figure below, a metal rod is pulled to the right at constant speed v, perpendicular to a uniform magnetic field directed out of the screen. The bar rides on frictionless metal rails connected through a resistor forming a complete circuit. The length of the bar between the rails is 5 cm, the magnitude of the magnetic field is 0.4 T, the resistor has a value of 10 Ω, and the speed of the bar to the...
Problem 9:   A rod AB with length L = 0.105 m is lying on a rectangular...
Problem 9:   A rod AB with length L = 0.105 m is lying on a rectangular conducting loop of zero resistance in a magnetic field as shown in the figure. The magnetic field has a constant magnitude B = 0.85 T. The rod is moving to the right with speed v = 0.52 m/s. The resistance on AB is R = 120 Ω. Part (a) Express the change of the magnetic flux going through the loop 1, ΔΦ1, in terms...
1- A U-shaped conductor and conducting rod are used to form a slidewire generator. The generator...
1- A U-shaped conductor and conducting rod are used to form a slidewire generator. The generator lies in the xy plane with its conducting rod being parallel to the y axis and sliding along the positive x axis. A uniform magnetic field is applied in the positive z direction. If the velocity of the rod is doubled, what happens to the power dissipated by the generator's resistance? -It is quadrupled - It is doubled -It stays the same -It is...
A conducting bar of length L and resistance R is free to slide on frictionless conducting...
A conducting bar of length L and resistance R is free to slide on frictionless conducting rails of negligible resistance. The circuit is immersed in a uniform and steady magnetic field of strength B. Initially the bar is at rest and the switch is open. The switch is closed. The battery provides a steady voltage V. a) What is the direction of the current at the instant the switch is closed? b) What is the magnitude of the current at...
A metal rod 0.83 m long moves with a speed of 2.3 m/s perpendicular to a...
A metal rod 0.83 m long moves with a speed of 2.3 m/s perpendicular to a magnetic field. If the induced emf between the ends of the rod is 0.41 V , what is the strength of the magnetic field?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT