Question

A 4.00 kg block hangs by a light string that passes over a massless, frictionless pulley and is connected to a 6.00 kg block that rests on a frictionless shelf. The 6.00 kg block is pushed agaisnt a spring to which it is not attached. THe spring has a spring constant of 180 N/m , and it is compressed by 30.0cm. Find the speed of the block after the spring is released and the 4.00 kg block has fallen a distance of 40.0 cm.

Answer #1

We can use the conservation of energy to solve the above problem

E stored in the spring E=1/2 kx^2 = 8.1 Joules

Work done by the friction through a slide of 0.4 m is Wf=uN = 0.2 * 6 *g = 11.76 Joules

Decrease in potential energy 4 kg = 4g*0.4 = 15.68 joules

let the speed of the blocks be v

v^2/2 * (4+6) = 12.02

which is the kinetic energy on the left are provided by energy stored in the spring and the decrease in potential energy of 4 kg minus work done against friction

v=1.55 m/sec

Two blocks are connected by a string that passes over a
massless, frictionless pulley, as shown in the figure. Block A,
with a mass mA = 2.00 kg, rests on a ramp
measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs
vertically below the pulley. Note that you can solve this exercise
entirely using forces and the constant-acceleration equations, but
see if you can apply energy ideas instead. Use g = 10
m/s2. When the system is released...

Two blocks are connected by a massless string that runs across a
frictionless pulley with a mass of 5.00 kg and a radius of 10.0 cm.
The first block with an unknown mass of m1 sits on a horizontal
surface and is also connected to a spring with a spring constant of
k = 250 N/m. The coefficient of kinetic friction between the first
block and the surface is 0.400. The second block with a mass of m2
= 6.00...

Two blocks are attached to opposite ends of a string that passes
over a massless, frictionless pulley (see the figure). Block ? of
mass 10.0 kg lies on a 60.0° incline with a coefficient of friction
of 0.500, and block ? of mass 1.00 kg is attached to a vertical
spring of force constant 200 N/m. The blocks are initially at rest
with the spring at equilibrium. Find the maximum height that the
block ? rises.

A mass m1 is connected by a light string that passes
over a pulley of mass M to a mass m2 sliding on a
frictionless horizontal surface as shown in the figure. There is no
slippage between the string and the pulley. The pulley has a radius
of 25.0 cm and a moment of inertia of ½ MR2. If
m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00
kg, then what is the tension in the string...

Two objects are connected by a light string that passes over a
frictionless pulley as shown in the figure below. Assume the
incline is frictionless and take m1 = 2.00 kg,
m2 = 7.90 kg, and ? = 55.5

Two
blocks of masses of 2.00 kg and 4.00 kg are connected by a massless
string going over a smooth, massless pulley. The table on which the
smaller mass rest is frictionless. The other side of the 2.00 kg
mass is connected to a spring of k=250 N/m and the far end of the
spring is tied to a fixed point. The system is release from rest
with the spring at its relaxed length.
A.) what is the speed of...

Two masses are connected by a light string passing over a light,
frictionless pulley as in Figure P5.63. The m1
= 4.75 kg object is released from rest at a point 4.00 m above the
floor, where the m2 = 3.20 kg object rests.
Please define all variables in solving
(a) Determine the speed of each object when the two pass each
other.
(b) Determine the speed of each object at the moment the 4.75 kg
mass hits the floor....

Block A, mass 5.00 kg, rests on a surface with μk = 0.600. A
massless rope is attached to its right side, and runs over a
pulley, treated as a thin ring, mass 1.00 kg and radius 5.00 cm, to
Block B, mass 7.00 kg, which hangs from the rope and is held at
rest. The rope does not slip over the pulley, and the pulley spins
on a frictionless axle. Block B is released from rest, and after an...

Block X and Y are connected by a string that passes over a pulley,
as shown in the firgure. Block Y has more mass than Block X. The
string and pulley have negligble mass, and the pulley rotates with
negligible friction. After the block are released from rest, what
happens to the mechanical energy Fmech of the system consisting of
the two block and Earth?

A small table is placed in an elevator. A light, frictionless
pulley is attached to the end of the table.Two masses are connected
by a string that passes over the pulley; m1 = 3.0 kg rests on the
table, and m2 = 2.0 kg hangs off the side. Between m1 and the table
there is no friction. While the elevator begins moving, the masses
are measured by observers in the elevator to have an acceleration
of a′.
(a) Find the...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 43 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago