Question

A stretched string is 1.91 m long and has a mass of 20.9 g. When the...

A stretched string is 1.91 m long and has a mass of 20.9 g. When the string oscillates at 440 Hz , which is the frequency of the standard A pitch, transverse waves with a wavelength of 16.7 cm travel along the string. Calculate the tension ? in the string.

Homework Answers

Answer #1

Velocity of wave is given by :

Therefore

v = 440 Hz x 0.167 m

= 73.48 m/sec

Since velocity is also given by following expression :

Where T = tension in string

= 0.0109 kg/m

Therefore

Therefore

T = 59.1 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stretched string has a mass per unit length of 5.00 g/cm and a tension of...
A stretched string has a mass per unit length of 5.00 g/cm and a tension of 10.0 N. A sinusoidal wave on this string has an amplitude of 0.12 mm and a frequency of 100 Hz and is travel- ing in the negative direction of an x axis. What are the (a) speed, (b) wavelength, and (c) period of the wave?
A particular guitar string has a mass of 3.0 grams and a length of 0.75 m....
A particular guitar string has a mass of 3.0 grams and a length of 0.75 m. when it is stretched, it produces a transverse wave of frequency 1200 Hz and wavelength 2/3 of the length of the string. (i) What is the speed of the transverse wave on the string? (ii) What is the tension of the string?
With what tension must a rope with length 2.70 m and mass 0.170 kg be stretched...
With what tension must a rope with length 2.70 m and mass 0.170 kg be stretched for transverse waves of frequency 43.0 Hz to have a wavelength of 0.810 m ?
A 121 cm-long, 3.8 g string oscillates in its m = 3 mode with a frequency...
A 121 cm-long, 3.8 g string oscillates in its m = 3 mode with a frequency of 144 Hz and a maximum amplitude of 5.0 mm. What are the wavelength and the tension in the string?
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If...
1. A cord of mass 0.65 kg is stretched between two supports 8.0 m apart. If the tension in the cord is 140 N, how long will it take a pulse to travel from one support to the other? 2. A 50.0 Kg ball hangs from a steel wire 1.00 mm in diameter and 6.00 m long. What would be the speed of a wave in the steel wire? 3. The intensity of an earthquake wave passing through the earth...
A string is 3.00 m long with a mass of 5.00 g. The string is held...
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with an applied tension of 500.00 N. (a) If a transverse pulse is sent down the string, how long does it take the pulse to travel the whole length? (b) Now suppose we keep the same tension on a thinner string, with the same mass (5 g) but twice the length (6 m). How long does the pulse take to travel the length...
A guitar string with a linear density of 2.0 g/m is stretched between supports that are...
A guitar string with a linear density of 2.0 g/m is stretched between supports that are 60 cm apart. The string is observed to form a standing wave with three antinodes when driven at a frequency of 420 Hz. What are (a) the frequency of the fifth harmonic of this string and (b) the tension in the string?
Waves are traveling on a very long string. A 1.54 m long piece of this string...
Waves are traveling on a very long string. A 1.54 m long piece of this string has a mass of 0.00311kg. The speed of the waves is 8.26 m/s; it takes 1.76s for 25 waves to pass by an observer. Calculate: a) the frequency of the waves, b) the wavelength of the waves, c) the tension on the string, d) the wavelength of the waves on the string if the source is the same but the tension on the string...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. (a) Determine which harmonic corresponds to the 630 Hz frequency. (b) Find the linear mass density of this string. (c) Find the tension in the string.
A wire with mass 55.0 g is stretched so that its ends are tied down at...
A wire with mass 55.0 g is stretched so that its ends are tied down at points 100 cm apart. The wire vibrates in its fundamental mode with frequency 65.0 Hz and with an amplitude of 0.800 cm at the antinodes. a.What is the speed of propagation of transverse waves in the wire? b.Compute the tension in the wire.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT