Question

Two charged particles are moving with equal velocities of 2.40 m/s in the +x-direction. At one...

Two charged particles are moving with equal velocities of 2.40 m/s in the +x-direction. At one instant of time the first particle with a charge of 6.20 μμC is located at x = 0 and y = +6.00 cm, and the second particle with a charge of 2.00 μμC is located at x = 0 and y = -6.00 cm.

a) What is the y-component of the magnetic force on the first particle due to the second?

b) How fast would the charges have to be moving for the magentic force to be equal in magnitude to the electric force?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two charged Particles are located in the X-Y plane. Particle 1 carries 0.520 uC of charge...
Two charged Particles are located in the X-Y plane. Particle 1 carries 0.520 uC of charge and is located at x= -2.86 cm and y = 1.46 cm. Particle 2 carries 0.660 uC of Charge and is located at x = 2.87 cm and y = -1.57 cm. Find the x component of the force on particle 1, in Newtons.
Two charged particles are located in the X-Y Plane. Particle 1 carries 0.900 uC of charge...
Two charged particles are located in the X-Y Plane. Particle 1 carries 0.900 uC of charge and is located at x = 1.64 cm and y = 1.36 cm. Particle 2 carries 0.940 uC of charge and is located at x = -1.98 cm and y = 4.92 cm. Find the X component of the Force on Particle 1, in Newtons.
Three charged particles form a triangle: particle 1 with charge Q1 = 108.0 nC is at...
Three charged particles form a triangle: particle 1 with charge Q1 = 108.0 nC is at xy coordinates (0, 4.30 mm), particle 2 with charge Q2 is at (0, -4.30 mm), and particle 3 with charge q = 44.0 nC is at (4.60 mm, 0). What are (a) the x component and (b) the y component of electrostatic force on particle 3 due to the other two particles if Q2 is equal to 108.0 nC? What are (c) the x...
Three charged particles form a triangle: particle 1 with charge Q1 = 93.0 nC is at...
Three charged particles form a triangle: particle 1 with charge Q1 = 93.0 nC is at xy coordinates (0, 3.40 mm), particle 2 with charge Q2 is at (0, -3.40 mm), and particle 3 with charge q = 20.0 nC is at (7.10 mm, 0). What are (a) the x component and (b) the y component of electrostatic force on particle 3 due to the other two particles if Q2 is equal to 93.0 nC? What are (c) the x...
A charged particle of mass m = 4.6X10-8 kg, moving with constant velocity in the y-direction...
A charged particle of mass m = 4.6X10-8 kg, moving with constant velocity in the y-direction enters a region containing a constant magnetic field B = 2.3T aligned with the positive z-axis as shown. The particle enters the region at (x,y) = (0.79 m, 0) and leaves the region at (x,y) = 0, 0.79 m a time t = 409 μs after it entered the region. 1. With what speed v did the particle enter the region containing the magnetic...
A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of...
A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of v⃗ =17000i^v→=17000i^ in m/s. They are positioned at the points (0,3,0)(0,3,0) and (0,−3,0)(0,−3,0). What is the magnitude and direction of the magnetic field at (0,3,0)(0,3,0) due to the particle located at (0,−3,0)(0,−3,0)? [Enter the magnitude in answer box 1 and the direction as one of either "in", "out", "up", "down", "left", or "right" in answer box 2. Assume that the xx-axis corresponds to left/right,...
A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of...
A.)Two particles, both carrying charge 3 C are traveling parallel to each other with velocities of v⃗ =17000i^v→=17000i^ in m/s. They are positioned at the points (0,3,0)(0,3,0) and (0,−3,0)(0,−3,0). What is the magnitude and direction of the magnetic field at (0,3,0)(0,3,0) due to the particle located at (0,−3,0)(0,−3,0)? [Enter the magnitude in answer box 1 and the direction as one of either "in", "out", "up", "down", "left", or "right" in answer box 2. Assume that the xx-axis corresponds to left/right,...
Two charged particles are located on the x-axis. The particle with charge q1 = 5.30 µC...
Two charged particles are located on the x-axis. The particle with charge q1 = 5.30 µC is located at x1 = 1.25 cm and the particle with charge q2 = −2.46 µC is located at x2 = −1.80 cm. (a) Determine the total electric potential (in V) at the origin. V (b) Determine the total electric potential (in V) at the point with coordinates (0, 1.50 cm). V
Two particles, both carrying charge 6 C are traveling parallel to each other with velocities of...
Two particles, both carrying charge 6 C are traveling parallel to each other with velocities of v⃗ =13000i^v→=13000i^ in m/s. They are positioned at the points (0,4,0)(0,4,0) and (0,−4,0)(0,−4,0). What is the magnitude and direction of the magnetic field at (0,4,0)(0,4,0) due to the particle located at (0,−4,0)(0,−4,0)? [Enter the magnitude in answer box 1 and the direction as one of either "in", "out", "up", "down", "left", or "right" in answer box 2. Assume that the xx-axis corresponds to left/right,...
The charges and coordinates of two charged particles held fixed in an xy plane are q1...
The charges and coordinates of two charged particles held fixed in an xy plane are q1 = 2.74 μC, x1 = 5.02 cm, y1 = 0.712 cm and q2 = -3.79 μC, x2 = -2.30 cm, y2 = 1.88 cm. Find the (a) magnitude and (b) direction (with respect to +x-axis in the range (-180°;180°]) of the electrostatic force on particle 2 due to particle 1. At what (c) x and (d) y coordinates should a third particle of charge...