Question

An electron moves at a speed of 19000 m/s in a circular path of radius 2.2...

An electron moves at a speed of 19000 m/s in a circular path of radius 2.2 cm in a solenoid. The magnetic field of the solenoid is perpendicular to the plane of the electron’s path. The permeability of free space is 4 π × 10−7 T · m/A. Find the strength of the magnetic field inside the solenoid. Answer in units of µT.

Find the current in the solenoid if it has 22 turns/cm. Answer in units of mA.

Homework Answers

Answer #1

Given :-

v = 1.9 x 10^4 m/s

r = 2.2 cm = 2.2 x 10^-2 m

q = 1.6 x 10^-19 C

m = 9.11 x 10^-31 kg

a)

The magnetic force supplies to the centripetal acceleration,

qvB = mv^2 / r

B = mv / qr

B = (9.11 x 10^-31 x 1.9 x 10^4) / (1.6 x 10^-19 x 2.2 x 10^-2 m)

B = 4.92 x 10^-6 T

B = 4.92 uT

b)

n = 22 turns / cm

n = 2200 m^-1

uo = 4pi x 10^-7 T.m/A

The magnetic field inside the solenoid have magnitude of,

B = uonI

I = B/uon

I = (4.92 x 10^-6 T) / (4pi x 10^-7 x 2200)

I = 1.777 x 10^-3 A

I = 1.777 mA

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron with kinetic energy of 5 x 10^−23 J moves in a circular path of...
An electron with kinetic energy of 5 x 10^−23 J moves in a circular path of radius =2.0 cm inside a solenoid. The magnetic field of the solenoid is perpendicular to the plane of the electron's path. The mass of the electron= 9.1 x 10^−31 kg. a) Find the strength of the magnetic field inside the solenoid. b) Find the current in the solenoid if the solenoid has 25 turns per centimeter.
an electron moves with a speed of 8x10 ^ 3 m / s in a circular...
an electron moves with a speed of 8x10 ^ 3 m / s in a circular path of 1cm radius within a solenoid of 2cm radius and 8 cm in length. Find a) the intensity of the magnetic field inside the solenoid, b) the current flowing in it if it has 20 turns per cm and c) its inductance. d) draw a picture indicating the direction of the current through the solenoid, the generated magnetic field and the electron rotation
An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.265 T....
An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.265 T. If the kinetic energy of the electron is 4.50 ✕ 10−19 J, find the speed of the electron and the radius of the circular path. (a) the speed of the electron m/s (b) the radius of the circular path μm
A proton moves on a circular path in a uniform magnetic field that is perpendicular to...
A proton moves on a circular path in a uniform magnetic field that is perpendicular to the plane of the circle. Calculate the radius of the circle, if the proton's kinetic energy is K = 0.23 MeV and magnetic field strength is 1.0T.
A cosmic ray electron moves at 5.25 × 106 m/s perpendicular to the Earth’s magnetic field...
A cosmic ray electron moves at 5.25 × 106 m/s perpendicular to the Earth’s magnetic field at an altitude where the field strength is 1.0 × 10-5 T.What is the radius, in meters, of the circular path the electron follows?
(A) At what speed (in m/s) will a proton move in a circular path of the...
(A) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.10 ✕ 106 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.10 ✕ 10−5 T? (B) What would the radius (in m) of the path be if the proton had the same speed as the electron? (C) What would the radius (in m) be if the proton had the...
(a) At what speed (in m/s) will a proton move in a circular path of the...
(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.00 ✕ 10^6 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.05 ✕ 10^−5 T? (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? (c) What would the radius (in m) be if the proton had the...
A proton moves at 8.00 ✕ 107 m/s perpendicular to a magnetic field. The field causes...
A proton moves at 8.00 ✕ 107 m/s perpendicular to a magnetic field. The field causes the proton to travel in a circular path of radius 0.750 m. What is the field strength (in T)?
An electron moves in a circular orbit of radius 0.1 mm, counterclockwise as you look down...
An electron moves in a circular orbit of radius 0.1 mm, counterclockwise as you look down at it, moving in a plane above and parallel to the plane of your exam paper. The velocity of the electron is v =3 × 106 m/s. a) Find the potential due the electron at the center of the circle. b) Find the electric field due the electron at the center of the circle. c) Find the magnetic field due to the electron at...
1) Determine the magnitude of the magnetic field that causes a circular path with a radius...
1) Determine the magnitude of the magnetic field that causes a circular path with a radius of 0.800 m in a proton with a speed perpendicular to the field of 7.5 x 107 m / s. 2) Determine the induced Hall voltage at the heart of a person on an MRI machine if the distance traveled is 7.50 cm, at 10.0 cm / s and perpendicular to a magnetic field of 1.50 T.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT