Question

mike tyson's punch starts from rest and accelerates uniformly at 100 m/s^2 while moving 50 cm....

mike tyson's punch starts from rest and accelerates uniformly at 100 m/s^2 while moving 50 cm. the speed of his hand immediately before landing on his opponent's jaw is

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A car accelerates uniformly from rest and reaches a speed of 13.7 m/s in 10.9...
a) A car accelerates uniformly from rest and reaches a speed of 13.7 m/s in 10.9 s. The diameter of a tire is 71.8 cm. Find the number of revolutions the tire makes during this motion, assuming no slipping. Answer in units of rev. b) What is final rotational speed of a tire? Answer in units of rev/s.
A merry-go-round starts from rest and accelerates uniformly over 26.5 s to a final angular velocity...
A merry-go-round starts from rest and accelerates uniformly over 26.5 s to a final angular velocity of 6.90 rev/min. (a) Find the maximum linear speed of a person sitting on the merry-go-round 7.25 m from the center. (b) Find the person's maximum radial acceleration. (c) Find the angular acceleration of the merry-go-round. (d) Find the person's tangential acceleration.
A merry-go-round starts from rest and accelerates uniformly over 19.5 s to a final angular velocity...
A merry-go-round starts from rest and accelerates uniformly over 19.5 s to a final angular velocity of 6.25 rev/min. (a) Find the maximum linear speed of a person sitting on the merry-go-round 4.00 m from the center. (b) Find the person's maximum radial acceleration. (c) Find the angular acceleration of the merry-go-round. (d) Find the person's tangential acceleration.
A car starts from rest at a stop sign. It accelerates at 3.6 m/s^2 for 6.5...
A car starts from rest at a stop sign. It accelerates at 3.6 m/s^2 for 6.5 s, coasts for 1.7 s, and then slows down at a rate of 2.5 m/s^2 for the next stop sign. How far apart are the stop signs?
1 point) A truck starts from rest and accelerates at 1?/?2. 6 s later, a car...
1 point) A truck starts from rest and accelerates at 1?/?2. 6 s later, a car accelerates from rest at the same starting point with an acceleration of 2.7?/?2. a) Where and when does the car catch the truck? 1. ?m from the starting point 2. at ? seconds from the moment the truck started to accelerate. b) What are their velocities when they meet? The truck :  m/s The car :  m/s
A race car accelerates uniformly from a speed of 32 m/s to a speed of 63...
A race car accelerates uniformly from a speed of 32 m/s to a speed of 63 m/s in 5.1 s while traveling counterclockwise around a circular track of radius of 422 m. When the car reaches a speed of 46 m/s, find the magnitude of the total acceleration (centripetal + tangential acceleration) in m/s2.
An electric vehicle starts from rest and accelerates at a rate of 2.1 m/s2 in a...
An electric vehicle starts from rest and accelerates at a rate of 2.1 m/s2 in a straight line until it reaches a speed of 19 m/s. The vehicle then slows at a constant rate of 1.3 m/s2 until it stops. (a) How much time elapses from start to stop? (b) How far does the vehicle move from start to stop
A car starts from rest and accelerates at a constant rate travelling a distance of 210...
A car starts from rest and accelerates at a constant rate travelling a distance of 210 m in 14.9 s. The car continues to accelerate at the same rate for an additional 199 m. What is the speed (in m/s) of the car after it has travelled the (210+199) m?
A car accelerates uniformly from rest to 17.9 m/s in 6.31 s along a level stretch...
A car accelerates uniformly from rest to 17.9 m/s in 6.31 s along a level stretch of road. Ignoring friction, determine the average power required to accelerate the car if (a) the weight of the car is 8.28 x 103 N, and (b) the weight of the car is 1.58 x 104 N.
3. A helicopter travelling at a velocity of 15 m/s [W] accelerates uniformly at a rate...
3. A helicopter travelling at a velocity of 15 m/s [W] accelerates uniformly at a rate of 7.0 m/s2 [E] for 4.0 s. What is the helicopter’s final velocity? 4. Two go-carts, A and B, race each other around a 1.0 km track. Go-cart A travels at a constant speed of 20.0 m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333 m/s2 . Which go-cart wins the race and by how much time? 5. A boat increases...