Question

During a very quick stop, a car decelerates at 6.2 m/s2. Assume the forward motion of...

During a very quick stop, a car decelerates at 6.2 m/s2. Assume the forward motion of the car corresponds to a positive direction for the rotation of the tires (and that they do not slip on the pavement). Randomized Variables at = 6.2 m/s2 r = 0.275 m ω0 = 93 rad/s

Part (a) What is the angular acceleration of its tires in rad/s2, assuming they have a radius of 0.275 m and do not slip on the pavement? α =

Part (b) How many revolutions do the tires make before coming to rest, given their initial angular velocity is 93 rad/s ?

Part (c) How long does the car take to stop completely in seconds?

Part (d) What distance does the car travel in this time in meters?

Part (e) What was the car’s initial speed in m/s?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.300 m? (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
The wheels on a car have a radius of 0.250 m. The car starts from rest...
The wheels on a car have a radius of 0.250 m. The car starts from rest and the driver accelerates the car at a constant rate and reaches a speed of 47.0 miles per hour in 7.0 s. a) Calculate the angular acceleration of the wheels of the car. b) The driver applies the brakes for 5.0 s which decelerates the car at a rate of 15.0 rad/s2. Calculate the total distance the car traveled during the entire 12.0 s...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.50 m/s2...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.50 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.350 m? (b) What is the angular speed of the wheels when the car has traveled half the total distance?
A car initially traveling at 28.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 28.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320m? Answer: 98.9 (b) What is the angular speed of the wheels when the car has traveled half the total distance? Answer: ?
1. A dentist using a dental drill brings it from rest to maximum operating speed of...
1. A dentist using a dental drill brings it from rest to maximum operating speed of 364,000 rpm in 3.2 s. Assume that the drill accelerates at a constant rate during this time. (a) What is the angular acceleration of the drill in rev/s2? rev/s2 (b) Find the number of revolutions the drill bit makes during the 3.2 s time interval. rev 2. In a laundromat, during the spin-dry cycle of a washer, the rotating tub goes from rest to...
Assessment Identify the Variables! In rotational kinematics - the variables are: t = time, which is...
Assessment Identify the Variables! In rotational kinematics - the variables are: t = time, which is measured in s (for seconds) θ = angle = what angle did the object turn thru, usually measured radians ωO = initial angular velocity = the rotational speed of the object at the beginning of the problem, which is measured in rad/s ω = final angular velocity = the rotational speed of the object at the end of the problem, which is measured in...