Question

a) By using Gauss’s law, find the electric field inside, outside and inbetween two concentric spherical...

a) By using Gauss’s law, find the electric field inside, outside and inbetween two concentric spherical metal shells, assuming that the inner shell, of radius a, carries a charge of -Q and the outer shell, of radius b, carries a charge of Q.

b) By making use of the result in part (a), find the energy stored in the system made of two concentric spherical metal shells.

c) By using the result in part (a) find the electric potential difference between the two concentric spherical metal shells, with radii a and b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical...
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical shell inside has radius R1 = 7.00 cm and charge q1 = +3.00×10^-6 C; the spherical shell outside has radius R2 = 17.0 cm and charge q2 = −5.00×10^-6 C. For both shells charges are distributed uniformly over their surfaces. Assume that V = 0 at large distances from both shells. A) Find the electric potential of the two shells at the distance r...
Three concentric conducting spherical shells have radii a, b, and c such that a < b...
Three concentric conducting spherical shells have radii a, b, and c such that a < b < c. Initially the inner shell is uncharged, the middle shell has a positive charge +Q, and the outer shell has a negative charge –Q. (a) Find the electric potential of the three shells. (b) If the inner and outer shells are now connected by a wire that is insulated as it passes through the middle shell, what is the electric potential of each...
The space between two concentric conducting spherical shells of radii b = 1.70 cm and a...
The space between two concentric conducting spherical shells of radii b = 1.70 cm and a = 1.00 cm is filled with a substance of dielectric constant κ = 15.1. A potential difference V = 65.0 V is applied across the inner and outer shells. Determine (a) the capacitance of the device, (b) the free charge q on the inner shell, and (c) the charge q induced along the surface of the inner shell.
A non-linear spherical charge distribution carries a density = ar^2 in the region r<a. If a...
A non-linear spherical charge distribution carries a density = ar^2 in the region r<a. If a concentric metal shell with radii b and c surrounds the inner charge, calculate the electric field in the four regions starting with region 1, inside the radius a and ending with region 4, outside the concentric spheres.
Using Gauss’s Law, answer the following question An insulator of radius, a = 3 cm is...
Using Gauss’s Law, answer the following question An insulator of radius, a = 3 cm is placed inside an SPHERICAL shell conductor of inner radius b = 7 cm and outer radius c = 12 cm. The conductor has a total charge of Q = - 10 nC. The insulator has a charge distributed around its volume with charge density ρ, where the value of ρo = 2 ∗ 10−4  C/m3 . a) Compute the value of the TOTAL charge of...
a) Use Gauss’s Law to derive radial dependence of the electric field inside a very long...
a) Use Gauss’s Law to derive radial dependence of the electric field inside a very long cylindrical shell of radius R and surface charge density σ? b) Same as a) except outside the shell? explain it clear plz
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical shell with radius 7.00cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=?9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. Part A What is the electric potential due to the two shells at the following...
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and...
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and the outer shell will be denoted by S2. The inner radius of S1 is r1. The outer radius of S1 is r2. The inner radius of S2 is r3 and the outer radius of S2 is r4. S1 and S2 are concentric with S1 contained within S2. S1 has a total charge of Q1 and S2 has a total charge of Q2. Find: a)...
A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner...
A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has a radius of rarar_a = 12.5 cmcm , and the outer sphere has a radius of rbrbr_b = 14.9 cmcm . A potential difference of 120 VV is applied to the capacitor. Part A What is the capacitance of the capacitor? Use ϵ0 = 8.85×10−12 F/mF/m for the permittivity of free space. Part B What is the magnitude E1 of the electric...
Suppose that you have two concentric spherical shells of radii a and b, with a<b. The...
Suppose that you have two concentric spherical shells of radii a and b, with a<b. The innershell has a charge−Qand the outer shell has a charge Q; the charges are uniformly distributed over each shell. a. Find the potential difference between the shells, going from the inner shell to the outershell. b. Now suppose that the shells are nearly the same size in the sense that b=a+d where d<<a. Write the leading behaviour of the potential difference in the limit...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT