Question

1. A particle of positive charge q and mass m enters parallel uniform electric and magnetic...

1. A particle of positive charge q and mass m enters parallel uniform electric and magnetic fields (of magnitudes E and B, respectively) both directed in the +z direction with a velocity v = v0i perpendicular to both fields.

(a) What is the the particle’s initial acceleration? You can give your answer as a vector in component form.

(b) What is the radius of the particle’s path (looking down the z-axis) if the magnetic field is B = Bk? Does it depend on time?

(c) How does the pitch, p(z), of the particle’s path vary with its z-axis coordinate? Let the electric field be given by E = Ek. Assume that the particle enters the field in the x, y-plane (at z = 0) and let p(z) = vz(z)T(z) where T(z) is the time period of a single orbit, and vz(z) is the component of the velocity along the z-direction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A positive charge particle ?enters a region with both a uniform electric field? and magnetic field...
A positive charge particle ?enters a region with both a uniform electric field? and magnetic field ?. If the direction of ?is parallel to ?, the path of the particle will be A. circle B. parabolaC. helix D. sinusoidal E. straight line
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a region of uniform electric and magnetic fields. The magnetic field is B=4.00 T in the +z-direction. The electric field is also in the +z-direction and has magnitude E=60.0 N/C. At time t = 0 the particle is on the y-axis at y=+1.00 m and has velocity v = 30.0 m/s in the +x-direction. Neglect gravity. What are the x-, y-, and z-coordinates of the...
An electron (q=-1,6x10-19C, m=9,1x10-31kg) enters a uniform magnetic field, whih is in +x axis and it...
An electron (q=-1,6x10-19C, m=9,1x10-31kg) enters a uniform magnetic field, whih is in +x axis and it has magnitude of 2T. At t=0, the velocity components vx=3x105m/s, vy=4x105m/s and vz=0. a-At t=0 calculate the magnetic force acting on proton and its acceleration. b- Calculate the Radius of helical path c- Calculate the angular velocity d- Calculate the pitch of helix. (0=4x10-7 MKS) Help quickly I get you thumbs up directly
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is...
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is upward and 12,000 V/m. The magnetic field has a magnitude of 5 milliTesla. 1.) What is the speed of the particle? 2.) What is the direction of the B1 field? 3.) If it enters a second magnetic field B2=0.4 Tesla, directed into the page, what is the radius of the path? Start from Fc=mv^2/r = Fe 4.) Does it bend clockwise or counterclockwise?
1)A particle moving to the right in a uniform magnetic field directed upwards experiences a magnetic...
1)A particle moving to the right in a uniform magnetic field directed upwards experiences a magnetic force directed inwards. The particle is (A) positively charged. (B) negatively charged. (C) uncharged. (D) Either A or B. (E) Any of the above. 2) A charged particle moves in a uniform magnetic field which is perpendicular to the particle’s velocity. Which of the following statements is/are correct? (A) The particle moves in a circle. (B) The kinetic energy of the particle does not...
A particle of mass m and charge q enters a region of magnetic field, in a...
A particle of mass m and charge q enters a region of magnetic field, in a direction that is prependiuclar to the field boundary. The particle then exits the region in the opposite direction to the one it entered the field, 7.7 ms later. The distance between the point of entry and exit is 14.5 mm. If the particle is 4 times the mass of a proton, and carries 20 times the charge of a proton, what is the field...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is initially at rest accelerates through a potential difference V = 100 V and enters into a region 0 < x < d, where there is a uniform magnetic field of magnitude B = 1.5 T with direction perpendicular to the plane of the paper and inward. Use the coordinate system shown in the figure to answer the following questions. (Gravitational force on the particle...
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform...
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform magnetic field (B0 field in the x-direction). (i) What is the force acting on the charge particle? Find equations of motion for the charge particle. (ii) Assume that initially the charge is placed the origin and has initial velocity (E0/2B0) in the y-direction. Determine position and velocity of the charge particle as a function of time. (iii) Find the trajectory of the particle and...
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic...
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic field B⃗ =( 0.530 T )i^. At t = 0 the proton has a velocity components vx = 1.60×105 m/s , vy=0, and vz = 1.90×105 m/s . What is the magnitude of the magnetic force acting on the proton? What is the direction of the magnetic force acting on the proton? In addition to the magnetic field there is a uniform electric field...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive xx direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   answer is 0,219,0 m/s why is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT