Question

A 5.0 kg red ball moving to the east at 9.0 m/s collides elastically head-on with...

A 5.0 kg red ball moving to the east at 9.0 m/s collides elastically head-on with a 10.0 kg green ball moving to the west at 3.0 m/s. What are the final velocities of both balls?

Homework Answers

Answer #1

here,

mass of red ball , m1 = 5 kg

initial speed , u1 = 9 m/s

mass of green ball , m2 = 10 kg

initial speed of green ball , u2 = - 3 m/s

let their final velocities be v1 and v2

using conservation of momentum

m1 * u1 + m2 * u2 = m1 * v1 + m2 * v2

5 * 9 - 10 * 3 = 5 * v1 + 10 * v2 ....(1)

and

using conservation of kinetic energy

0.5 * m * u1^2 + 0.5 * m2 * u2^2 = 0.5 * m1 * v1^2 + 0.5 * m2 * v2^2

5 * 9^2 + 10 * 3^2 = 5 * v1^2 + 10 * v2^2 ....(2)

from (1) and (2)

v1 = - 7 m/s

v2 = 5 m/s

the final speed of red ball is 7 m/s to the west

the final speed of green ball is 5 m/s to the east

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block...
A 6.0-kg block moving at 9.0 m/s to the right collides head-on with another 12.0-kg block moving at 3.0 m/s to the left. What are the velocities of the two blocks after the collision if the collision is elastic?
A 55 kg hard sphere moving horizontally at 18 m/s due east collides head-on with a...
A 55 kg hard sphere moving horizontally at 18 m/s due east collides head-on with a 65 kg hard sphere moving horizontally at 25 m/s due west. Assuming that the collision is one-dimensional elastic collision determine the following. What are the final velocities of each sphere after the collision?
A ball of mass 2.5 kg moving east with a speed of 4.2 m/sec collides head-on...
A ball of mass 2.5 kg moving east with a speed of 4.2 m/sec collides head-on with a 1 kg ball initially moving at 1.7 m/sec to the west. If the collision is elastic, what will be the speed and direction of each ball after the collision?
A 2.00-kg ball is moving at 4.80 m/s toward the right. It collides elastically with a...
A 2.00-kg ball is moving at 4.80 m/s toward the right. It collides elastically with a 4.00-kg ball that is initially at rest. 1. Calculate the final velocity of the 2.00-kg ball. (Express your answer to three significant figures.) 2. Calculate the final velocity of the 4.00-kg ball. (Express your answer to three significant figures.)
A 4.80-kg ball, moving to the right at a velocity of +1.70 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +1.70 m/s on a frictionless table, collides head-on with a stationary 7.75-kg ball. Find the final velocities of the balls if the collision meet the following conditions. (a) elastic 4.8-kg ball =_________ m/s 7.75-kg ball =_________ m/s (b) completely inelastic _________m/s
A 6.00 kg ball, A, moving at velocity 3.00 m/s due east collides with a 6.00...
A 6.00 kg ball, A, moving at velocity 3.00 m/s due east collides with a 6.00 kg ball, B, at rest. After the collision, A moves off at 40.0° N of E and ball B moves off at 50.0° S of E. What is the speed of the balls after the collision?
A 1.5 kg metal ball moving east at 50 m/s collides with a stationary wooden sphere....
A 1.5 kg metal ball moving east at 50 m/s collides with a stationary wooden sphere. The ball rebounds at an angle of 45° north of east and the wooden sphere leaves at 10.0 m/s and at an angle of 30° south of east. What is the mass of the wooden sphere and what is the speed of the metal ball after the collision?
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless...
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless table, collides head-on with a stationary 6.90-kg ball. Find the final velocities of (a) the 1.10-kg ball and of (b) the 6.90-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless...
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless table, collides head-on with a stationary 6.70-kg ball. Find the final velocities of (a) the 1.40-kg ball and of (b) the 6.70-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT