Question

A 1.2 m guitar string is under a tension of 888 N. The waves produced on...

A 1.2 m guitar string is under a tension of 888 N. The waves produced on the string (when plucked) travel with a speed of 444 m/s. What is the mass of this string?

Homework Answers

Answer #1

We know that wave speed of a transverse wave on a string is given by:

V = sqrt (T/)

T = Tension in string = 888 N

= linear mass density = mass per unit length

= m/L

L = length of string = 1.2 m

V = wave speed = 444 m/s

So,

= T/V^2 = m/L

m = T*L/V^2

m = 888*1.2/444^2 = 5.40*10^-3 kg

m = mass of string = 5.40 gm

Let me know if you've any query.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N,...
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N, and is supposed to have a fundamental frequency of 110 Hz. When a tuning fork of that frequency is sounded while the string is plucked, a beat frequency of 4 Hz is heard. The peg holding the string is loosened, decreasing the tension, and the beat frequency increases. Before it was loosened and while it still had a tension of 100 N, The frequency...
A guitar string has a linear mass density of 0.005 kg/m, a tension of 100 N,...
A guitar string has a linear mass density of 0.005 kg/m, a tension of 100 N, and is supposed to have a fundamental frequency of 110 Hz. When a tuning fork of that frequency is sounded while the string is plucked, a beat frequency of 2 Hz is heard. The peg holding the string is tightened, increasing the tension, and the beat frequency increases. Before it was tightened and while it still had a tension of 100 N, The frequency...
1.Transverse waves are traveling on a long string that is under a tension of 7.00 N...
1.Transverse waves are traveling on a long string that is under a tension of 7.00 N . The equation describing these waves is y(x,t)=( 7.20 cm)sin[( 415 s−1)t−( 45.6 m−1)x] To what quantity does the value of 2π/(45.6 m−1) correspond? 2.Transverse waves are traveling on a long string that is under a tension of 7.00 N . The equation describing these waves is y(x,t)=( 7.20 cm)sin[( 415 s−1)t−( 45.6 m−1)x] To what quantity does the value of 2π∗415 s−1 correspond?...
A nylon guitar string has a linear density of 9.3 g/m and is under a tension...
A nylon guitar string has a linear density of 9.3 g/m and is under a tension of 151 N. The fixed supports are distance D = 98 cm apart. The string is oscillating in the standing wave pattern shown in the following figure. Calculate the frequency of the traveling waves for this standing wave.
A guitar produces sound at specific frequencies generated by standing waves that are created by the...
A guitar produces sound at specific frequencies generated by standing waves that are created by the plucking of the string under tension. Calculate the frequency of the first harmonic (in Hz) of the sound generated from plucking a string with a mass per unit length of 6 g/m, under tension of 133 N and a length between supports of 0.7 m.
A guitar string of length 72.8 cm (which might be out of tune) has been plucked...
A guitar string of length 72.8 cm (which might be out of tune) has been plucked and is producing a note of frequency 334 Hz. (a) What is the speed of transverse traveling waves on this guitar string? Give your answer in m/s. HINT: The note you hear is produced by the vibrational mode of the string which has the fundamental (lowest possible) frequency. Draw a picture of the string vibrating in that mode and determine the wavelength of the...
Waves are traveling on a very long string. A 1.54 m long piece of this string...
Waves are traveling on a very long string. A 1.54 m long piece of this string has a mass of 0.00311kg. The speed of the waves is 8.26 m/s; it takes 1.76s for 25 waves to pass by an observer. Calculate: a) the frequency of the waves, b) the wavelength of the waves, c) the tension on the string, d) the wavelength of the waves on the string if the source is the same but the tension on the string...
A particular guitar string has a mass of 3.0 grams and a length of 0.75 m....
A particular guitar string has a mass of 3.0 grams and a length of 0.75 m. when it is stretched, it produces a transverse wave of frequency 1200 Hz and wavelength 2/3 of the length of the string. (i) What is the speed of the transverse wave on the string? (ii) What is the tension of the string?
Two identical guitar strings are stretched with the same tension between supports that are not the...
Two identical guitar strings are stretched with the same tension between supports that are not the same distance apart. The fundamental frequency of the higher-pitched string is 360Hz, and the speed of transverse waves in both wires is 150 m/s. How much longer is the lower-pitched string if the beat frequency is 4Hz?
1. A wave train is traveling along a string. Seven waves pass by a point in...
1. A wave train is traveling along a string. Seven waves pass by a point in 3.75 s. The distance from the top of a crest to the bottom of an adjacent trough is 0.462 cm. Find: a) the speed of the waves. b) the tension in the string if it has a length of 1.68 m and a mass of 3.86 g. 2. Suppose that the string in problem #1 is attached to a second string whose linear density...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT