Question

Draw a ray diagram for a convex mirror Drag a ray diagram P( object distance )=...

Draw a ray diagram for a convex mirror
Drag a ray diagram
P( object distance )= 30
Q( image distance )= 56
F( focal length )=19.5
R( radius of curvature= 39

Homework Answers

Answer #1

Dear student|

[ ] If you have any query regarding this solution, don't forget to comment I will immediately sort it out.and if you are satisfied and find helpful then KINDLY GIVE THE RATING .your rating is very important to me.

Thanks for asking ||

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Mirror lab Object distance = measured distance from object/lighted object to center of mirror = p...
Mirror lab Object distance = measured distance from object/lighted object to center of mirror = p or do Image distance = measured distance from center of mirror to image/screen = q or di Focal length calculated using mirror equation: (1/f) = (1/p) + (1/q) or (1/f) = (1/do) + (1/di) Magnification: m = -(q/p) or m = -(di/do) Procedure pp101-102 Part One: CONCAVE MIRROR a.) p = q = 38 cm b.) p > q: p = 50 cm, q...
A convex mirror has a focal length of 3 cm. An object is placed 2 cm...
A convex mirror has a focal length of 3 cm. An object is placed 2 cm away from the mirror. The darkest lines on the grid represent 1 cm. (a) Draw the ray diagram and locate the image. Label the location of the focal point F, and the center of curvature. (b) Indicate the positive direction on the optical axis. Mark important locations on the optical axis, s, s’, f, r, and 0 (c) Indicate the magnification.
a convex mirror has a focal length of -20 cm. a. determine an object location for...
a convex mirror has a focal length of -20 cm. a. determine an object location for which the image will be one half the size of the object b. draw a ray diagram for this situation c. the mirror is replaced with a thin lens in exactly the same position. the image and object do not move. find the focal length of this thin lens.
A diverging (convex) mirror has radius of curvature 5 cm. (a) What is its focal length?...
A diverging (convex) mirror has radius of curvature 5 cm. (a) What is its focal length? An object of size 1 cm is placed at distance (b) 5 cm and (c) 2.5 cm from the mirror. Calculate the distance and size of the image in each case, and state whether it's real or virtual. Draw ray diagrams to scale.
An object that is 3.00 cm tall is 24.0 cm in front of a concave mirror....
An object that is 3.00 cm tall is 24.0 cm in front of a concave mirror. The radius of curvature of the mirror is 20.0 cm. What is the image height?   In your handwritten work: Show how you solved focal length, image distance, and magnification. What are the image characteristics? Draw a ray diagram. CONCEPT:
The radius of curvature of a convex mirror is 3.20 102 cm. An object that is...
The radius of curvature of a convex mirror is 3.20 102 cm. An object that is 5.0 cm high is placed 53.3 cm in front of this mirror. Use a ray diagram drawn to scale to compute the following: (a) What is the location of the image? (b) What is the height of the image?
1. The image behind a convex mirror (radius of curvature = 98.0 cm) is located 41.0...
1. The image behind a convex mirror (radius of curvature = 98.0 cm) is located 41.0 cm from the mirror. (a) Where is the object located (give the distance to the mirror) and (b) what is the magnification of the mirror? 2. A concave mirror ( f = 50 cm) produces an image whose distance from the mirror is one-third the object distance. Determine (a) the object distance and (b) the (positive) image distance. 3. A convex mirror has a...
A 3.0 cm high object is placed 5.0 m in front of a concave spherical mirror...
A 3.0 cm high object is placed 5.0 m in front of a concave spherical mirror with radius of curvature 2.0 m. A) At what distance from the mirror is the image formed? B) What is the magnification? C) How high is the image? D) Is the image upright or inverted? Is the image real or virtual? E) Draw a ray diagram for the image formed for the same object at the same location by the aforementioned mirror. Also, check...
An object is placed in front of a converging lens (convex lens) with a radius of...
An object is placed in front of a converging lens (convex lens) with a radius of curvature of 4.88 cm and focal length of 2.44 cm. An image is formed the object. (a) Calculate how far is the lens from the object if the image is real. (b) How far is image from the lens? (c) is the image upright or inverted, and is the image magnified or diminished? (d) Draw the ray diagram to confirm your result prediction.
Geometric Optics - A convex spherical mirror has a radius of magnitude R and is centered...
Geometric Optics - A convex spherical mirror has a radius of magnitude R and is centered at C. A real object R/4 tall is located a distance 1 R to the left of the mirror's vertex. Draw a ray diagram showing the formation of the image, and compute the magnification and image location for the object. - show both sketch and calculations