Question

1. A 0.12kg body is connected to a wall by a spring with a spring constant...

1.

A 0.12kg body is connected to a wall by a spring with a spring constant of 570 N/m. The body experiences simple oscillatory motion when pulled from its equilibrium rightward by 0.080m and then released from rest. what is the displacement of the block after 0.20s.

2.

An object connected to a spring (with a spring constant of 29.8 N/m) is displaced 0.232 meter from equilibrium on a frictionless horizontal tabletop; upon release, the object experiences simple harmonic motion as it oscillates horizontally with ω = 2.81 radians per second. what is the potential energy stored in the mass-spring system after 1.42 seconds.

Homework Answers

Answer #1

1)

Given m = 0.12 kg

spring constant K = 570 N/m

Amplitude A = 0.08 m

t = 0.2 s

Angular frequency   omega = sqrt(k/m)

omega = sqrt(570/0.12)

omega = 68.92 rad/s


The displacement is given by

x = A * cos(omega * t)

x = 0.08 * cos(68.92 * 0.2)

x = 0.0276 m

2)

K = 29.8 N/m

Amplitude A = 0.232 m

omega = 2.81 rad/s

time t = 1.42 m

The displacement is given by

x = A * cos(omega * t)

x = 0.232 * cos(2.81 * 1.42)

x = - 0.153 m

The potential energy is

U = 1/2 * k * x^2

U = 1/2 * 29.8 * (-0.153)^2

U = 0.35 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal spring with spring constant 2 N/m has one end connected to a wall while...
A horizontal spring with spring constant 2 N/m has one end connected to a wall while the other end is connected to a block resting on a frictionless surface. The mass of the block is 0.5 kg. The block is pulled 10 cm away from its equilibrium position and released. (a) Calculate the frequency of the resulting simple harmonic motion. (b) Calculate the maximum velocity of the block When the mass is 3 cm away from equilibrium it then strikes...
a 85.5 kg block oscillates on the end of an ideal spring( spring constant 105 N/m)...
a 85.5 kg block oscillates on the end of an ideal spring( spring constant 105 N/m) with simple harmonic motion of amplitude A=4.75 cm. Assume there is no friction anywhere. During this motion: when the spring is stretched distance 0.327A from equilibrium: Find the fraction of its total energy that is kinetic energy.
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. ____m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 15.0 cm from equilibrium is at t = 0.200 s. What is the block's period of oscillation? _______ s b) A block with a...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant)...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant) of 3.58 N/m undergoes simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. At what distance from the equilibrium position are the kinetic energy and potential energy of the system the same?
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on...
A 50.0-g object connected to a spring with a force constant of 100.0 N/m oscillates on a horizontal frictionless surface with an amplitude of 8.00 cm. a) What is the period (in seconds) and frequency of its motion? b) Assuming that the object's equilibrium position (i.e. when the spring is unstretched) is designated as x = 0, and that at t = 0 the object is located at maximum amplitude, x(t) = A cos (ωt), describes the motion. What is...
A 0.48-kg object connected to a light spring with a force constant of 17.8 N/m oscillates...
A 0.48-kg object connected to a light spring with a force constant of 17.8 N/m oscillates on a frictionless horizontal surface. Assume the spring is compressed 4.5 cm and released from rest. (a) Determine the maximum speed of the object. (b) Determine the speed of the object when the spring is compressed 1.8 cm (c) Determine the speed of the object as it passes the point 1.8 cm from the equilibrium position (d) For what value of x does the...
1. A 0.45 kg object mass attached to a spring whose spring constant is 600 n/m...
1. A 0.45 kg object mass attached to a spring whose spring constant is 600 n/m executes simple harmonic motion. its maximum speed is 3.0 m/s the maximum acceleration is: