Question

A wood block of Mass M=3.00 kg and rests horizontally at the bottom of a ramp....

A wood block of Mass M=3.00 kg and rests horizontally at the bottom of a ramp. A bullet of mass m=0.0420kg with an intial velocity v0 is fired at the wood block and embedded inside the block. The wood blocl and the embedded bullet together move up the ramp and reach a vertical heigh of yf= 2.40m relative to the bottom of the rmap(yo=0) before sliding downward. Ignore friction/air resistance.

a) What is the total mechanical energy of the block+bullets at the top of the ramp relative to yo=0 b) What is the speed of the block+bullets right after the bullet hits the block c)What is the intial velocity, v0, of the bullet d) How much mechanical energy is lost before and after the bullet hits the block.

Homework Answers

Answer #1

let initial velocity = vo

let after collision combined velocity = v

given that The wood blocl and the embedded bullet together move up the ramp and reach a vertical heigh of yf= 2.40m

so energy conservation for this system

KEi + PEi = KEf +PEf

1/2(m+M)v2 + 0 = 0 + (m+M)gh

0.5x(0.042+3)v2 =  (0.042+3)x9.81x2.4

v = 6.86 m/s .............asswer b

a) total ME = (0.042+3)x9.81x2.4 = 71.62 J

now the collision study b/w block and bullet

applying momentum conservation

m(vo) + 0 = (m+M)v

vo = (0.042+3)x6.86 /0.042

vo= 496.86...........ansc

ans

d lose in ME = (MEf) - (MEi)

= 1/2 m vo2 - 1/2 (m+M) v2  

= 5184.3-71.6

lost ME= 5112.7 J

answer...d

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin block of soft wood with a mass of 0.0840 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.0840 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 558 m/s at a block of wood and passes completely through it. The speed of the block is 17.0 m/s immediately after the bullet exits the block. (a) Determine the speed of the bullet as it exits the block. m/s (b) Determine if the final kinetic energy of...
A thin block of soft wood with a mass of 0.076 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.076 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 613 m/s at a block of wood and passes completely through it. The speed of the block is 20 m/s immediately after the bullet exits the block. (a) Determine the speed (in m/s) of the bullet as it exits the block. _ m/s (b) Determine if the final...
A thin block of soft wood with a mass of 0.0800 kg rests on a horizontal...
A thin block of soft wood with a mass of 0.0800 kg rests on a horizontal frictionless surface. A bullet with a mass of 4.67 g is fired with a speed of 564 m/s at a block of wood and passes completely through it. The speed of the block is 16.0 m/s immediately after the bullet exits the block. (a) Determine the speed of the bullet as it exits the block. __ m/s (b) Verify by calculating the initial and...
A block of mass m1 begins at the bottom of a ramp that is inclined an...
A block of mass m1 begins at the bottom of a ramp that is inclined an angle θ above the horizontal. It is initially moving up the ramp with velocity v0. A second block of mass m2 is at rest on the ramp a distance d up the ramp from the first block. Friction keeps the second block from sliding down. The coefficient of kinetic friction between the ramp and the blocks is µk for both blocks. What is the...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
A bullet of mass 4.5 g is fired horizontally into a 2.4 kg wooden block at...
A bullet of mass 4.5 g is fired horizontally into a 2.4 kg wooden block at rest on a horizontal surface. The bullet is embedded in the block. The speed of the block immediately after the bullet stops relative to it is 2.7 m/s. At what speed is the bullet fired?
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg...
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg which then compresses a spring (k=100N/m by a distance of x=0.1 before coming to rest. the bullet remains embedded in the wooden block. ignore friction between the block and table. a) what is initial speed of the bullet? b) calculate total kinetic energy of the bullet block-system immediately before and after the collision. is the collision between the bullet and the block elastic or...
A bullet of mass m is fired into a block of mass M that is at...
A bullet of mass m is fired into a block of mass M that is at rest. The block, with the bullet embedded, slides distance d across a horizontal surface. The coefficient of kinetic friction is ?k. What is the speed of a 9.0 g bullet that, when fired into a 8.0 kg stationary wood block, causes the block to slide 5.6 cm across a wood table? Assume that ?k=0.20.
A 1 kg block of wood is attached to a spring, of force constant 200 N/m,...
A 1 kg block of wood is attached to a spring, of force constant 200 N/m, which is attached to an immovable support. The block rests on a frictional surface with a coefficient of kinetic friction of 0.2. A 20 g bullet is fired into the block horizontally compressing the spring a maximum distance of 15 cm. Find the original velocity of the bullet before the collision.
A small wooden block with mass 0.750 kg is suspended from the lower end of a...
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.72 m long. The block is initially at rest. A bullet with mass 0.0136 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.700 m ,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT