Question

Dust grains of diameter 0.83 µm and density 1000 kg/m3 are in equilibrium with air (A...

Dust grains of diameter 0.83 µm and density 1000 kg/m3 are in equilibrium with air (A = 28.9) at a temperature of 278 K . What is the rms speed of the dust particles? 1 m = 106µm. Answer in units of mm/s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If the molecular weight of air is 28.9, what is the density of air at atmospheric...
If the molecular weight of air is 28.9, what is the density of air at atmospheric pressure and a temperature of 368.7 K? 1 atm = 1.013×105 N/m2, the mass of a proton is 1.67262 × 10?27 kg , Avogadro’s number is 6.02214 × 1023 mol?1 and k = 1.38065 × 10?23 N · m/K . Answer in units of kg/m3.
1. The density of water is 1000 kg/m3. Compared to this, the density of air at...
1. The density of water is 1000 kg/m3. Compared to this, the density of air at sea level is approximately 1000 times less. approximately 100 times less. approximately 10 times less. about the same. 2. What is the gauge pressure at the bottom of a 5 feet deep swimming pool? (Answer in Pa) 3.You are given the task to determine the volume of an irregular shaped object. You hang it on a scale and measure its weight to be 34...
For a wind turbine with a rotor diameter of 43 meters, air density of 1.125 kg/m3,...
For a wind turbine with a rotor diameter of 43 meters, air density of 1.125 kg/m3, and a wind velocity of 10 m/s, Wind power density is calculated as follows: A= Area= ¼ (π) D2 = ¼ (3.1416) (43)2 = 1451m2 Assuming 1m depth of the disk Volume = Area X Depth = 1451m2 X 1m = 1451m3 Mass = Density X Volume = 1.125 kg/m3 X 1451m3 = 1780 kg WPD = Pwr/ A = ½ ρ V3 =...
Dust particles of diameter 0.06 mm and density 1.6 g/cm3 are unsettled during high winds and...
Dust particles of diameter 0.06 mm and density 1.6 g/cm3 are unsettled during high winds and rise to a height of 200 m by the time things calm down. Estimate how long it takes for the dust particles to fall back to the ground in still air at 1 atm and 30 C, and their velocity. Disregard the initial transient period during which the dust particles accelerate to their terminal velocity, and assume Stokes law (CD calculated at very low...
A spherical raindrop 2.9 mm in diameter falls through a vertical distance of 3950 m. Take...
A spherical raindrop 2.9 mm in diameter falls through a vertical distance of 3950 m. Take the cross-sectional area of a raindrop = πr2, drag coefficient = 0.45, density of water to be 1000 kg/m3,and density of air to be 1.2 kg/m3. (a) Calculate the speed (in m/s) a spherical raindrop would achieve falling from 3950 m in the absence of air drag. 278.222 m/s (b) What would its speed (in m/s) be at the end of 3950 m when...
A fluid of viscosity 0,002 N-s /m2 and density 1000 kg/m3 flows with an average speed...
A fluid of viscosity 0,002 N-s /m2 and density 1000 kg/m3 flows with an average speed of 1 m/s in a 2 cm-diameter horizontal smooth pipe . Calculate a)magnitude of shearing stress at the pipe wall. b) shear stress velocity of flow c) magnitude of pressure gradient to induce flow
A flow of whole milk at 293 K with a density of 1030 kg / m3...
A flow of whole milk at 293 K with a density of 1030 kg / m3 and viscosity of 2.12 cP, passes through a pipe at the speed of 0.605 kg / s through a glass pipe of 63.5mm in diameter. a) Calculate the Reynolds number. Is the flow turbulent? b) Calculate the flow velocity in m3 / s needed for a Reynolds number of 2100 and speed in m / s.
A liquid of density 1394 kg/m3 flows with speed 2.48 m/s into a pipe of diameter...
A liquid of density 1394 kg/m3 flows with speed 2.48 m/s into a pipe of diameter 0.21 m . The diameter of the pipe decreases to 0.05 m at its exit end. The exit end of the pipe is 5.43 m lower than the entrance of the pipe, and the pressure at the exit of the pipe is 1.5 atm. Applying Bernoulli’s principle, what is the pressure P1 at the entrance end of the pipe? Assume the viscosity of the...
1. A crane lifts a steel submarine with a density of 8,050 kg/m3 and a mass...
1. A crane lifts a steel submarine with a density of 8,050 kg/m3 and a mass of 25,000 kg. It is moved as a constant speed (which means the net force equals??). What is the tension in the lifting cable? The density of the water is 1030 kg/m3. 2. An Airbus A490 aircraft (which may not actually exist) is a massive plane. It has a mass of 600,000 kg and a wing area of 875 m2. The density of air...
A liquid of density 1270 kg/m3 flows steadily through a pipe of varying diameter and height....
A liquid of density 1270 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.81 m/s and the pipe diameter d1 is 11.3 cm. At Location 2, the pipe diameter d2 is 17.1 cm. At Location 1, the pipe is Δy=9.59 m higher than it is at Location 2. Ignoring viscosity, calculate the difference ΔP in units of Pa between the fluid pressure at Location 2 and the...