Question

“A butterfly flies along with a velocity vector given by v = (a-bt²) Î + (ct)...

“A butterfly flies along with a velocity vector given by v = (a-bt²) Î + (ct) ĵ where a=1.4 m/s, b=6.2 m/s³, and c=2.2 m/s². When t= 0 seconds, the butterfly is located at the origin. Calculate the butterfly’s position vector and acceleration vector as functions of time. What is the y-coordinate as it flies over x = 0 meters after t = 0 seconds?”

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
the position of an object in one dimension is given by X(t)=A+Bt+Ct^2, where x is in...
the position of an object in one dimension is given by X(t)=A+Bt+Ct^2, where x is in meters and t is in seconds. find the velocity and acceleration at 3 seconds. what are the units for A, B, and C?
A particles velocity along the x-axis is described by v(t) = At + Bt^2, where t...
A particles velocity along the x-axis is described by v(t) = At + Bt^2, where t is in seconds, velocity is in m/s^2, A = 1.18m/s^2 and B = -0.61m/s^3. What is the distance traveled, in m, by the particle between times t0=1.0 and t1=3.0? please show steps and calculations
The velocity of a particle moving along the x-axis varies with time according to v(t) =...
The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1, where A = 7 m/s, B = 0.33 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration (in m/s2) and position (in m) of the particle at t = 2.6 s and t = 5.6 s. Assume that x(t = 1 s) = 0. t = 2.6 s acceleration  m/s2 position  m ? t = 5.6 s acceleration  m/s2   position  m ?
Suppose that the position vector for a particle is given as a function of time by...
Suppose that the position vector for a particle is given as a function of time by vector r (t) = x(t)î + y(t)ĵ, with x(t) = at + b and y(t) = ct2 + d, where a = 1.90 m/s, b = 1.10 m, c = 0.128 m/s2, and d = 1.12 m. (a) Calculate the average velocity during the time interval from t = 2.05 s to t = 3.75 s. vector v = m/s (b) Determine the velocity...
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m...
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m and a uniform magnetic field  = (0.200 î + 0.300 ĵ + 0.400 ) T. Determine the acceleration of the proton when it has a velocity  = 230 î m/s.
A proton moves through a region containing a uniform electric field given by  = 70.0 ĵ V/m...
A proton moves through a region containing a uniform electric field given by  = 70.0 ĵ V/m and a uniform magnetic field  = (0.200 î + 0.300 ĵ + 0.400 ) T. Determine the acceleration of the proton when it has a velocity  = 250 î m/s.
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m...
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m and a uniform magnetic field  = (0.200 î + 0.300 ĵ + 0.400 ) T. Determine the acceleration of the proton when it has a velocity  = 230 î m/s.
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is...
A particle's velocity along the x-axis is described by v(t)= At + Bt2, where t is in seconds, v is in m/s, A= 0.85 m/s2, and B= -0.69 m/s3. Acceleration= -0.53 m/s2 @ t=0 and the Displacement= -2.58 m b/w t=1s to t=3s. What is the distance traveled in meters, by the particle b/w times t=1s and t=3s?
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is...
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is in seconds. When t = 1 s, the particle is located 10 m to the left of the origin. Determine the displacement from t = 0 to t = 7 s. Determine the distance the particle travels during the time period given in previous part.