Question

A underpass at the entrance to UCLS is a 9 m long tunnel, open at both...

A underpass at the entrance to UCLS is a 9 m long tunnel, open at both ends. With a speed of sound at 343 m/s, what are the fundamental and first overtone resonant frequencies?

I was able to get it till 343/2(9)

Is this the correct way?

Homework Answers

Answer #1

In this question we have to find the fundamental and first overtone frequency in both ends open organ pipe.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s....
An organ pipe is 127 cmcm long. The speed of sound in air is 343 m/sm/s. A. What are the fundamental and first three audible overtones if the pipe is closed at one end? B. What are the fundamental and first three audible overtones if the pipe is open at both ends?
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
9. (a) A 1 m long string has a mass per unit length of 1.5×10−3 kg/m...
9. (a) A 1 m long string has a mass per unit length of 1.5×10−3 kg/m and is under a tension of 35 N. Find the first four harmonics of this string. (b) A given pipe is 1.5 m long. If the speed of sound through this pipe is 343 m/s, what are the frequencies of the first three harmonics of the pipe when it is: (i) open at both ends, (ii) open at only one end. 10. A truck...
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s. a. What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. b. What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas. 2.A particular organ pipe can resonate at 252...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string has a mass of 45 g and under a tension of 50 N. a. What is the frequency of vibration? b. At the same frequency, you wish to see four loops, what tension you need to use. Part 2. a. Determine the shortest length of pipe, open at both ends, which will resonate at 256 Hz (so the first harmonics is 256Hz). The speed...
What is the beat frequency heard when two organ pipes, each open at both ends, are...
What is the beat frequency heard when two organ pipes, each open at both ends, are sounded together at their fundamental frequencies if one pipe is 52 cm long and the other is 62 cm long?(The speed of sound is 340 m/s). Answer in Hz
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...
Pipe A, which is 1.50 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.50 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s....
An organ pipe is 130 cm long. The speed of sound in air is 343 m/s. Part A What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. Part B What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas.
An open organ pipe is 1.8m long. If the speed of sound is 343m/s, what are...
An open organ pipe is 1.8m long. If the speed of sound is 343m/s, what are the pipes:           a) fundamental , b) 1st overtone , & c) 2nd overtone ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT