Question

A projectile of mass 2.0 kg is fired in the air at an angle of 43.0°...

A projectile of mass 2.0 kg is fired in the air at an angle of 43.0° to the horizon at a speed of 44.0 m/s. At the highest point in its flight, the projectile breaks into three parts of mass 1.0 kg, 0.7 kg, and 0.3 kg. The 1.0 kg part falls straight down after breakup with an initial speed of 14.8 m/s, the 0.7 kg part moves in the original forward direction, and the 0.3 kg part goes straight up.

(a)

Find the speeds (in m/s) of the 0.7 kg and 0.3 kg pieces immediately after the break-up.

v2= _____ m/s

v3=______ m/s

(b)

How high (in m) from the break-up point does the 0.3 kg piece go before coming to rest?

______m

(c)

Where does the 0.7 kg piece land relative to where it was fired from? (Give the horizontal distance in meters from the launch point to where the 0.7 kg piece lands.)

______ m

Homework Answers

Answer #1

***************************************************************************************************
This concludes the answers. If you need any more clarification, modification or correction, feel free to ask.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A projectile of mass 2.75 kg is fired in the air at an angle of 45.0∘45.0∘...
A projectile of mass 2.75 kg is fired in the air at an angle of 45.0∘45.0∘ to the horizon at a speed of 290.0 m/s. At the highest point in its flight, the projectile breaks into three parts of mass 2.00 kg, 0.70 kg, and 0.05 kg. The 2.00 kg part falls straight down after breakup with an initial speed of 10.0 m/s, the 0.70 kg part moves in the original forward direction, and the 0.05 kg part goes straight...
A 44.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial...
A 44.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 144 m/s from the top of a cliff 120 m above level ground, where the ground is taken to be y = 0. (a) What is the initial total mechanical energy of the projectile? (Give your answer to at least three significant figures.) (b) Suppose the projectile is traveling 102.1 m/s at its maximum height of y = 336 m. How much...
A projectile of mass 2 kg is fired at an angle to the ground such that...
A projectile of mass 2 kg is fired at an angle to the ground such that its flight is parabolic. At a certain point in its flight, its potential energy is 150 J and its kinetic energy is 250 J. What is the speed of the projectile when it hits the ground? You may assume that the potential energy at ground level is zero and there is no air resistance?
Motion of the CM, 2D:a)Review question: Projectile 1 is fired upward with initial speed 240 m/s,...
Motion of the CM, 2D:a)Review question: Projectile 1 is fired upward with initial speed 240 m/s, at an angle of 60° above the horizontal. It lands later on the horizontal ground a distance x away. Find x. Show your setup and work. b)An identical projectile 2 is fired with the same initial speed and angle. However at the highest point of its path, it explodes into two pieces, 2A and 2B, each with half the original mass. The explosion forces...
A 2.38 kg projectile is fired with a velocity of 187 m/s at an angle of...
A 2.38 kg projectile is fired with a velocity of 187 m/s at an angle of 22.7 above the horizontal. what will be the momentum of this projectile at the highest point of its trajectory? nevermind i got it
A 204-kg projectile, fired with a speed of 131 m/sat a 65.0 ∘  angle, breaks into three...
A 204-kg projectile, fired with a speed of 131 m/sat a 65.0 ∘  angle, breaks into three pieces of equal mass at the highest point of its arc (where its velocity is horizontal). Two of the fragments move with the same speed right after the explosion as the entire projectile had just before the explosion; one of these moves vertically downward and the other horizontally. A. Determine the magnitude of the velocity of the third fragment immediately after the explosion. B....
A projectile is launched with an initial speed of 40.0 m/s at an angle of 35.0°...
A projectile is launched with an initial speed of 40.0 m/s at an angle of 35.0° above the horizontal. The projectile lands on a hillside 3.85 s later. Neglect air friction. (Assume that the +x-axis is to the right and the +y-axis is up along the page.) (a) What is the projectile's velocity at the highest point of its trajectory? magnitude m/s direction ° counterclockwise from the +x-axis (b) What is the straight-line distance from where the projectile was launched...
A projectile is fired with an initial speed of 37.1 m/s at an angle of 43.1...
A projectile is fired with an initial speed of 37.1 m/s at an angle of 43.1 ∘ above the horizontal on a long flat firing range. Part A Determine the maximum height reached by the projectile. Part B Determine the total time in the air.
A 0.34 kg projectile is fired into the air from the top of a 6.45 m...
A 0.34 kg projectile is fired into the air from the top of a 6.45 m cliff above a valley. Its Initial velocity is 11.4 m/s at 61? above the horizontal. How long is the projectile in the air for ? How far from the bottom of the cliff does the projectile land?
A projectile is fired with an initial speed of 48.6 m/sat an angle of 44.2 ∘...
A projectile is fired with an initial speed of 48.6 m/sat an angle of 44.2 ∘ above the horizontal on a long flat firing range. Part A Determine the maximum height reached by the projectile. ymax = nothing   m   SubmitRequest Answer Part B Determine the total time in the air. t = nothing   s   SubmitRequest Answer Part C Determine the total horizontal distance covered (that is, the range). Δx = nothing   m   SubmitRequest Answer Part D Determine the speed of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT