Question

You want to photograph a circular diffraction pattern whose central maximum has a diameter of 1.0...

You want to photograph a circular diffraction pattern whose central maximum has a diameter of 1.0 cm . You have a helium-neon laser (?=633nm) and a 0.12 mm -diameter pinhole.

Homework Answers

Answer #1

Given :-

Diameter of the central maximum, D = 1 cm

r = D/2 = 0.5 cm = 5 x 10^-3 m

= 633 nm = 633 x 10^-9 m

d = 0.12 mm = 1.2 x 10^-4 m

Diffraction through circular aperture,

= 1.22 / d

is the angle of resolution,

= r / L

R/L =  1.22 / d

L = d*r / 1.22

L = (1.2 x 10^-4 x 5 x 10^-3) / (1.22 x 633 x 10^-9)

L = 0.777 m

Hence, distance the viewing screen is placed at 0.777 m behind the pinhole

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Electrons pass through a 320-nm-diameter circular aperture, forming a diffraction pattern on a detector 80 cm...
Electrons pass through a 320-nm-diameter circular aperture, forming a diffraction pattern on a detector 80 cm behind the aperture. What is the kinetic energy of the electrons in eV if the width of the central maximum is 0.26 mm?
Laser light of wavelength 625 nm is incident on a circular aperture which has a diameter...
Laser light of wavelength 625 nm is incident on a circular aperture which has a diameter of 0.063 mm. A diffraction pattern is observed on a screen which is placed 53 cm from the aperture. Give your answer to at least three significant figures. Answer must be accurate to 1%. 1.)What is the diffraction angle, θ, of the first diffraction minimum? 2.)What is the distance, on the screen, from the center of the central bright spot to the first dark...
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on...
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on a screen. You measure on the screen that the 11th dark fringe is 9.19 cm away from the center of the central maximum. How far is the screen located from the slit?
Using a 687 nm wavelength laser, you form the diffraction pattern of a 1.1 mm wide...
Using a 687 nm wavelength laser, you form the diffraction pattern of a 1.1 mm wide slit on a screen. You measure on the screen that the 14th dark fringe is 9.11 cm away from the center of the central maximum. How far is the screen located from the slit? The answer is not 10.419 m
A 14.0-mW helium–neon laser emits a beam of circular cross section with a diameter of 2.90...
A 14.0-mW helium–neon laser emits a beam of circular cross section with a diameter of 2.90 mm. (a) Find the maximum electric field in the beam. ________kN/C (b) What total energy is contained in a 1.00-m length of the beam?________ pJ (c) Find the momentum carried by a 1.00-m length of the beam. _________kg · m/s
A 12.0-mW helium–neon laser emits a beam of circular cross section with a diameter of 2.35...
A 12.0-mW helium–neon laser emits a beam of circular cross section with a diameter of 2.35 mm. (a) Find the maximum electric field in the beam. kN/C (b) What total energy is contained in a 1.00-m length of the beam? pJ (c) Find the momentum carried by a 1.00-m length of the beam. kg · m/s
One day, after pulling down your window shade, you notice that sunlight is passing through a...
One day, after pulling down your window shade, you notice that sunlight is passing through a pinhole in the shade and making a small patch of light on the far wall. Having recently studied optics in your physics class, you're not too surprised to see that the patch of light seems to be a circular diffraction pattern. It appears that the central maximum is about 6 cm across, and you estimate that the distance from the window shade to the...
The interference pattern on a screen 1.94 behind an 800 line/mm diffraction grating. The first maximum...
The interference pattern on a screen 1.94 behind an 800 line/mm diffraction grating. The first maximum is 69.7 cm away from the center. a. Find λ. b. How many bright fringes can we see? c. If you used small angle approximation to a.? Provide your answer as a percentage.
Question 1. Find the first few maxima and minima for the diffraction pattern of two slits...
Question 1. Find the first few maxima and minima for the diffraction pattern of two slits separated by 12 μm with a screen 50 cm away assuming we use a laser with a wavelength in air of 550 nm. Question 2. Using these values sketch a graph of light intensity versus distance from the central maximum (y = 0). Question 3. If you then examine two slits separated by 1.2 μm what wavelength light should you use to keep the...
QUESTION 10 A student took a laser with wavelength 532 nm and pointed the beam at...
QUESTION 10 A student took a laser with wavelength 532 nm and pointed the beam at a fiber. The student then observed the diffraction pattern on a paper positioned 85.4 cm past the fiber. The central maximum of the diffraction pattern had a width of 47.8 mm. What is the diameter of the fiber in micrometers (µm)? (State the answer in micrometers with 2 digits right of decimal.) QUESTION 11 A microscope has an objective lens which is circular and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT