The electron in a hydrogen atom starts in the n = 7 level. Determine all the possible wavelengths that could be emitted if the electron ends in the first excited state.
use the formula 1/L = R *(1/n^2 -1/m^2)
here L is wavelength
R is Rydberg Constant = 1.1 *10^7 m
so
when m = 7 and n = 6
1/L1 = 1.1 *10^7 *(1/6^2-1/7^2)
L1 = 1/(1.1 *10^7 *(1/6^2-1/7^2))
L1 = 12335.6 nm
------------
when m = 7 and n = 5
1/L2 = 1.1 *10^7 *(1/5^2-1/7^2)
L2 = 1/(1.1 *10^7 *(1/5^2-1/7^2))
L2 = 4640.15 nm
------------
when m = 7 and n = 4
1/L3 = 1.1 *10^7 *(1/4^2-1/7^2)
L3 = 1/(1.1 *10^7 *(1/4^2-1/7^2))
L3 = 2159.7 nm
------------
when m = 7 and n = 3
1/L4 = 1.1 *10^7 *(1/3^2-1/7^2)
L4 = 1/(1.1 *10^7 *(1/3^2-1/7^2))
L4 = 1002.2nm
------------
when m = 7 and n = 2
1/L5 = 1.1 *10^7 *(1/2^2-1/7^2)
L5 = 1/(1.1 *10^7 *(1/2^2-1/7^2))
L5 = 396 nm
------------
when m = 7 and n = 1
1/L6 = 1.1 *10^7 *(1/1^2-1/7^2)
L6 = 1/(1.1 *10^7 *(1/1^2-1/7^2))
L6 = 92.8 nm
------------
Get Answers For Free
Most questions answered within 1 hours.