Question

The windpipe of one typical whooping crane is 4.3 feet long. What is the fundamental resonant...

The windpipe of one typical whooping crane is 4.3 feet long. What is the fundamental resonant frequency of the bird’s trachea, modeled as a narrow pipe close at one end? (Assume a temperature of 32degrees Celsius)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the fundamental frequency for a 42.5 cm long pipe, open at one end and closed...
Determine the fundamental frequency for a 42.5 cm long pipe, open at one end and closed at the other. A taut string has a mass of 2 g, a length of 4.0 m and is under a tension of 5120 N. Determine which of the harmonics of the pipe, if any, are resonant with the harmonics of the string. [The speed of sound in air is 340
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is...
The fundamental frequency of an organ pipe, closed at one end, is 255.6 Hz. a)What is the fundamental frequency of this organ pipe if the temperature drops to 1.20°C? (Hz) The fundamental frequency of an organ pipe, open at both ends, is 278.9 Hz. b) What is the fundamental frequency of this organ pipe if the temperature drops to 1.00°C?
Two identical pipes, each closed at one end, have a fundamental frequency of 349 Hz at...
Two identical pipes, each closed at one end, have a fundamental frequency of 349 Hz at 20.0°C. A) What is the length of the pipes? B) If the air temperature is increased to 25.0°C in one pipe what is the new fundamental frequency in this pipe? C) If the two pipes are now sounded together, what beat frequency results?
An organ pipe is 1.2 m long. What are the fundamental and first two overtones is...
An organ pipe is 1.2 m long. What are the fundamental and first two overtones is the pipe is (a) closed at one end. (b) open at both ends?
Q2M.4 Consider an organ pipe 34.3 cm long that has one open and one closed end....
Q2M.4 Consider an organ pipe 34.3 cm long that has one open and one closed end. What is the fundamental pitch of this pipe? Where are the nodes (relative to the closed end) for the normal mode of the air in this pipe whose frequency is 1250 Hz??
An organ pipe is 134cm long and operates at room temperature. What are the frequencies of...
An organ pipe is 134cm long and operates at room temperature. What are the frequencies of the fundamental (n=1) and the next harmonic (n=2) if both ends of the pipe are open? What are the frequencies of the fundamental (n=1) and the next harmonic (n=3) if one end of the pipe is closed?
What are the first 3 resonant frequencies on a 20cm long tube, with one end closed?...
What are the first 3 resonant frequencies on a 20cm long tube, with one end closed? Use your speed of sound measurement in this calculation. Speed of sound measurement = 339.8 m/s
What is the length of an open-pipe resonator with a fundamental frequency of 400.0Hz 400.0 Hz...
What is the length of an open-pipe resonator with a fundamental frequency of 400.0Hz 400.0 Hz ? (Assume the speed of sound is 331m/s 331 m/s .) flute is an open-pipe resonator that can produce a wavelength that is twice as long as itself. A clarinet is a closed-pipe resonator. What is the longest wavelength that a clarinet can produce? Why do the same notes sound different on different musical instruments? What is the possible number of nodes and antinodes...
You have two air columns that are each 2.470 m long. One column is open at...
You have two air columns that are each 2.470 m long. One column is open at both ends and the other is closed at one end. You wish to determine the frequencies you can produce in the audible range (20 Hz–20,000 Hz) on a day when the temperature of the air is at 24.00°C. (Give your answers to at least four significant figures. Assume that the speed of sound at 0° C is exactly 331 m/s.) (a) in the column...
A. What length should an oboe have to produce a fundamental frequency of 244 Hz on...
A. What length should an oboe have to produce a fundamental frequency of 244 Hz on a day when the speed of sound is 343 m/s? It is open at both ends. B. What frequency is received by a person watching an oncoming ambulance moving at 119 km/h and emitting a steady 706 Hz sound from its siren? The speed of sound on this day is 333 m/s. C. What energy in millijoules falls on a 0.808 cm diameter eardrum...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT