Question

A parallel-plate capacitor with plate separation d is connected to a battery that provides a potential...

A parallel-plate capacitor with plate separation d is connected to a battery that provides a potential difference ε. While still connected to the battery, the plate separation is increased to 2d.

a) Does the potential difference across the capacitor change as the separation increases? If so, then by what factor? If not, then why not?

b) Does the capacitance change as the separation increases? If so, then by what factor? If not, then why not?

c) Does the capacitor charge change as the separation increases? If so, then by what factor? If not, then why not?

d) Suppose that a dielectric with dielectric constant κ is inserted between the plates with the separation distance held constant. Does the capacitor charge change? If so, then by what factor? If not, then why not?

Homework Answers

Answer #1

please upvote....thank u:)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. After being disconnected from the battery, inserting a dielectric with κ will increase U. After being disconnected from the battery, inserting a dielectric with κ...
A parallel plate capacitor of capacitance Co has plates of area A with separation d between...
A parallel plate capacitor of capacitance Co has plates of area A with separation d between them. When it is connected to a battery of voltage Vo, it has charge of magnitude Qo on its plates. It is then disconnected from the battery and the plates are pulled apart to a separation 2d without discharging them. After the plates are 2d apart, by what factor does the magnitude of the charge on the plates change? By what factor does the...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor is then disconnected and the separation between the plates is halved in such a way that so charge leaks off As the plate separation is being halved which of the following parameters remains constant? An air filled k=1 ideal parallel plate capacitor has a capacitance of C. If the area of the plates is doubled insert a dielectric material k=2 and the distance between...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V Volts. (C is the capacitance and U is the stored energy.) Select true or false for each statement. 1)With the capacitor connected to the battery, inserting a dielectric with κ > 1 will decrease U. 2)With the capacitor connected to the battery, decreasing d increases C. 3)After being disconnected from the battery, decreasing d...
A parallel-plate air capacitor of area A= 14.0 cm2 and plate separation d= 2.20 mm is...
A parallel-plate air capacitor of area A= 14.0 cm2 and plate separation d= 2.20 mm is charged by a battery to a voltage 56.0 V. If a dielectric material with κ = 4.00 is inserted so that it fills the volume between the plates (with the capacitor still connected to the battery), how much additional charge will flow from the battery onto the positive plate?
A parallel plate capacitor with a plate area of 20.0 cm2 and plate separation of 8.00...
A parallel plate capacitor with a plate area of 20.0 cm2 and plate separation of 8.00 mm is connected to a constant potential difference of 5.00 V. A dielectric with a dielectric constant of 4.00 is inserted between the plates. a) What is the energy stored in the capacitor? b) The capacitor is disconnected from the battery and the dielectric is removed from the interior of the capacitor. What is the new energy of the capacitor now? c) What does...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is...
A parallel plate capacitor with plate separation d is connected to a battery. The capacitor is fully charged to Q Coulombs and a voltage of V. (C is the capacitance and U is the stored energy.) Answer the following questions regarding the capacitor charged by a battery. For each statement below, select True or False. 1. After being disconnected from the battery, inserting a dielectric with ? will decrease U. 2.With the capacitor connected to the battery, decreasing d increases...
A parallel plate capacitor has plates with equal and opposite charges ±Q , which are initially...
A parallel plate capacitor has plates with equal and opposite charges ±Q , which are initially separated by a distance d . The capacitor is not connected to a battery. Then, the plates are moved farther apart so they are now separated by a distance 2d and also a dielectric with dielectric constant κ=2 that fills the entire space in the gap is inserted. What happens to the stored energy U and the potential difference between the plates ΔV=V+−V− after...
A parallel-plate capacitor is connected to a battery and stores 4.0 nCnC of charge. Then, while...
A parallel-plate capacitor is connected to a battery and stores 4.0 nCnC of charge. Then, while the battery remains connected, a sheet of Teflon is inserted between the plates. For the dielectric constant, use the value from Table 21.3. By how much does the charge change?
A parallel-plate capacitor is connected to a battery and then disconnected. If a dielectric is inserted...
A parallel-plate capacitor is connected to a battery and then disconnected. If a dielectric is inserted between the plates, what happens to (a) the capacitance and (b) the voltage?