Question

A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at...

A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. What is the speed of the wreckage just after the collision? In what direction does the wreckage move just after the collision?

Homework Answers

Answer #1

Hence, v= 12.23 m/s 48.01° North of East

Hope this helps :)

Please rate this question, be it good or bad, as it helps me improve.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling...
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling north at 20.3 m/s . The cars stick together. Assume that any other unbalanced forces are negligible. A) In what direction does the wreckage move just after the collision? B) What is the speed of the wreckage just after the collision?
880 kilogram car traveling East at 15 meters per second collides with a 750 kg car...
880 kilogram car traveling East at 15 meters per second collides with a 750 kg car traveling north at 20 meters per second the cars stick together. in what direction does the wreckage move just after the Collision. please show all work so I can actually learn this. thanks.
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg...
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg car moving North with speed of 15 m/s at an intersection. Both cars stick together after collision. What is the speed and direction of these two stuck cars immediately after this collision?
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The...
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 35.0 degrees north of east and at a speed of 5.55 m/s. Find the speed of the 3,000-kg car before the collision. __________ m/s north
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 47.0° north of east and at a speed of 6.66 m/s. Find the velocity of the 3000 kg car before the collision. m/s north
a 900kg car traveling 30.0 degree south of east at 12.0m/s collides with a 750kg car...
a 900kg car traveling 30.0 degree south of east at 12.0m/s collides with a 750kg car traveling North at 17.0m/s . the cars stick together. what is the speed of the wrekage just after the collision
Car A of mass 1,274 kg is traveling east at 13.2 m/s when it collides with...
Car A of mass 1,274 kg is traveling east at 13.2 m/s when it collides with car B of mass 1,596 kg which is traveling at 14.6 m/s at 71.4 degrees N of W. The two cars stick together after the collision. What is the magnitude of the final velocity of the cars?
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at...
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at 15.0 m/s, and the two cars connect together. What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east.
Car #1 with a mass of 1.50 x 103 kg is travelling east at a speed...
Car #1 with a mass of 1.50 x 103 kg is travelling east at a speed of 25.0 m/s. It collides in the middle of an intersection with Car #2 which has a mass of 2.50 x 103 kg and enters the intersection travelling north at a speed of 20.0 m/s. (a) Find the magnitude and direction of the velocity of the wreckage, assuming that after the collision the two cars stick together and that frictional forces can be neglected....
A 1000-kg car approaches an intersection traveling north at 20.0 m/s. A car of equal mass...
A 1000-kg car approaches an intersection traveling north at 20.0 m/s. A car of equal mass approaches the same intersection traveling east at 22.0 m/s. The two cars collide at the intersection and lock together. Ignoring any external forces that act on the cars during the collision, what is the velocity ,aka, magnitude and direction, of the cars immediately after collision?