Question

During a certain time interval, the angular position of a swinging door is described by ?...

During a certain time interval, the angular position of a swinging door is described by ? = 5.06 + 10.1t + 1.95t2, where ? is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door at the following times.

(a) t = 0

? = 5.06 rad
? = 10.1 rad/s
? =  rad/s2


(b) t = 2.99 s

? =  rad
? =  rad/s
? =  rad/s2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
During a certain time interval, the angular position of a swinging door is described by θ...
During a certain time interval, the angular position of a swinging door is described by θ = 4.96 + 10.7t + 1.93t2, where θ is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door at the following times. (a) t = 0 θ = rad ω = rad/s α = rad/s2 (b) t = 2.99 s θ =    rad ω =    rad/s α =    rad/s2
The angular position of a point on the rim of a rotating wheel is given by...
The angular position of a point on the rim of a rotating wheel is given by ? = 6.0t - 2.0t2 + t3, where ? is in radians and t is in seconds. (a) What is the angular velocity at t = 2 s? rad/s (b)What is the angular velocity at t = 4.0 s? rad/s (c) What is the average angular acceleration for the time interval that begins at t = 2 s and ends at t = 4.0...
A disk-shaped machine part has a diameter of 39.0 cm. Its angular position is given by...
A disk-shaped machine part has a diameter of 39.0 cm. Its angular position is given by θ = −1.22t3 + 1.60t2, where t is in seconds and θ is in radians. (a) What is the maximum angular speed of the part during this time interval? (Assume the time interval is from t = 0 to when the part reverses its direction.) rad/s (b) What is the maximum tangential speed of a point halfway to the rim of the part during...
The angular position of a point on the rim of a rotating wheel is given by...
The angular position of a point on the rim of a rotating wheel is given by θ = 7.88t - 3.72t2 + 2.28t3, where θ is in radians and t is in seconds. What are the angular velocities at (a) t = 1.42 s and (b) t = 6.30 s? (c) What is the average angular acceleration for the time interval that begins at t = 1.42 s and ends at t = 6.30 s? What are the instantaneous angular...
The angular position of a point on the rim of a rotating wheel is given by...
The angular position of a point on the rim of a rotating wheel is given by θ = 1.82t - 5.66t2 + 3.63t3, where θ is in radians and t is in seconds. What are the angular velocities at (a) t = 1.17 s and (b) t = 7.69 s? (c) What is the average angular acceleration for the time interval that begins at t = 1.17 s and ends at t = 7.69 s? What are the instantaneous angular...
1.At time t = 0, the initial position of an object is x1 = -9.00 m....
1.At time t = 0, the initial position of an object is x1 = -9.00 m. Two seconds later he is in position x2 = 5.00m and finally moves to position x3 = -12.0m for a total time of three seconds. Speed average (in m / s) of the object in this time interval is: 2.The position of a particle is described by the function x = 4.0 t2 - 2.0 t + 2.0 (m). Determine the average acceleration (in...
The angular position of a point on a rotating wheel is given by θ = 7.36...
The angular position of a point on a rotating wheel is given by θ = 7.36 + 7.52t2 + 4.70t3, where θ is in radians and t is in seconds. At t = 0, what are (a) the point's angular position and (b) its angular velocity? (c) What is its angular velocity at t = 4.32 s? (d) Calculate its angular acceleration at t = 1.53 s. (e) Is its angular acceleration constant?
The angular position of a point on a rotating wheel is given by θ = 2.78...
The angular position of a point on a rotating wheel is given by θ = 2.78 + 1.02t2 + 4.96t3, where θ is in radians and t is in seconds. At t = 0, what are (a) the point's angular position and (b) its angular velocity? (c) What is its angular velocity at t = 7.77 s? (d) Calculate its angular acceleration at t = 1.36 s. (e) Is its angular acceleration constant?
Frictional torque causes a disk to decelerate from an angular speed of 4.30 rad/s at t...
Frictional torque causes a disk to decelerate from an angular speed of 4.30 rad/s at t = 0 to 2.00 rad/s at t = 4.80 s. The equation describing the angular speed of the wheel during this time interval is given by dθ dt = ω0e−bt, where b and ω0 are constants. (a) What are the values of b and ω0 during this time interval? b = _______s−1 ω0 = _______rad/s (b) What is the magnitude of the angular acceleration...
A bar on a hinge starts from rest and rotates with an angular acceleration α =...
A bar on a hinge starts from rest and rotates with an angular acceleration α = 15 + 8t, where α is in rad/s2 and t is in seconds. Determine the angle in radians through which the bar turns in the first 4.90 s.