Question

A block of mass m is initially held at rest at point P on an incline...

A block of mass m is initially held at rest at point P on an incline that makes an angle q with respect to horizontal. The coefficient of kinetic friction between the block and the incline is mk. After the block slides down the incline from point P, it starts to slide without friction up a vertical circular track of radius R. When it reaches the top of the circle, the normal force (downward) by the track to the block equals 50% mg. Find: (a) the speed of the block as it passes the top of the track; (b) the length L of the incline; (c) the net force exerted on the block when it is at point P, a distance R above the bottom of the track.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.600 m...
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.600 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 4.05 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.450 m...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.450 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A , the magnitude of the normal force exerted on the block by the track has magnitude 3.75 N . In this same revolution, when the block reaches the top of its path, point B , the magnitude...
A small block with mass 0.0350 kg slides in a vertical circle of radius 0.450 m...
A small block with mass 0.0350 kg slides in a vertical circle of radius 0.450 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.90 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.550 m...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.550 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.85 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A block of mass 16.31 kg is initially held at rest on a 25.94 degree incline....
A block of mass 16.31 kg is initially held at rest on a 25.94 degree incline. The coefficient of static friction is 0.3472 and the coefficient of kinetic friction is 0.2083. A) Find: mg, FDH, FN, fsmax, and fk and express them rounded to the nearest full Newton. B) What is the minimum force up the ramp that will keep the block from sliding down? C) What is the maximum force up the ramp you can exert before the block...
A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0800 m...
A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0800 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.85 N. What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path? Express your answer...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide?
A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a...
A 2.70-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 1.20 s. (a) Find the magnitude of the acceleration of the block. (m/s)^2 ​(b) Find the coefficient of kinetic friction between block and plane. (c) Find the friction force acting on the block. ​Magnitude N Direction (d) Find the speed of the block after it has slid 1.90 m.    (m/s^2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT