Question

What is the angular momentum of a figure skater spinning at 2.3 rev/s with arms in...

What is the angular momentum of a figure skater spinning at 2.3 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5 m, a radius of 16 cm , and a mass of 49 kg ?

How much torque(in magnitude) is required to slow her to a stop in 4.8 s , assuming she does not move her arms?

Homework Answers

Answer #1

Given

initial angular velocity is w = 2.3 rev/s = 2.3*2pi rad/s

figure skater is like a solid cylinder with m = 49 kg , height h = 1.5 m, radius R = 16 cm

time t = 4.8 s

we know the relation between the torque and angular momentum is  

T = dL/dt

and L = I*W

I is moment of inertia of the solid cylinder = M*R^2 /2

L = W* M*R^2/2 = 2.3*2pi*49*0.16^2 /2 = 9.06387 kg m^2/s

now torque is  

T = (M*R^2/2)(dW/dt)

T = (49*0.16^2 /2)(2.3*2pi/4.8) N.m

T = 1.8883066243177 N.m

T = 1.88831 N.m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. What is the angular momentum of a figure skater spinning at 2.0 rev/s with arms...
a. What is the angular momentum of a figure skater spinning at 2.0 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1 m, a radius of 0.2 m, and a mass of 50 kg? b. How much torque is required to slow her to a stop in 5.0 s, assuming she does not move her arms?
What is the angular momentum of a figure skater spinning at 3.2rev/s with arms in close...
What is the angular momentum of a figure skater spinning at 3.2rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5m , a radius of 16cm , and a mass of 55kg? How much torque is required to slow her to a stop in 4.4s , assuming she does not move her arms?
Diana, a figure skater, is initially spinning at an angular speed 2.50 rev/s, with her arms...
Diana, a figure skater, is initially spinning at an angular speed 2.50 rev/s, with her arms and legs inward. Assume that she is a uniform cylinder with a height of 1.4 m, a radius of 18 cm, and a mass of 55 kg. Assume no external torques act. a) What is her moment of inertia? b) If she extends her arms outward, what is her new moment of inertia? Assume that her armspan is 1.3 m and her arms are...
  An ice skater is spinning at 6.6 rev/s and has a moment of inertia of 0.52...
  An ice skater is spinning at 6.6 rev/s and has a moment of inertia of 0.52 kg ⋅ m2. a.)  Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.6 rev/s. b.)  He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 1.5 rev/s. c.) Suppose instead he keeps his...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.450 kg·m2. Answer to 3 significant figures. (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg·m2) if his angular velocity drops to 1.35 rev/s. Answer to 3 significant figures. c) Suppose instead he keeps his arms in and...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given...
a) Calculate the angular momentum (in kg·m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.450 kg·m2. Answer to 3 significant figures. (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg·m2) if his angular velocity drops to 1.35 rev/s. Answer to 3 significant figures. c) Suppose instead he keeps his arms in and...
An ice skater with a moment of inertia of 0.390 kg*m2 is spinning at 6.00 rev/s...
An ice skater with a moment of inertia of 0.390 kg*m2 is spinning at 6.00 rev/s a. What is the angular velocity of the ice skater in rad/s? b. What is the angular momentum of the ice skater at this angular velocity c. He reduces his rate of spin (angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity drops to 1.70 rev/s d. Suppose instead...
a figure skater presses off the ice to begin spinning with her arms close to her...
a figure skater presses off the ice to begin spinning with her arms close to her body. after completing 2 turns in 0.8 seconds she moves her arms further away from her body, what will her new angular velocity be? a. <16.6rad/s b. 18 rad/s c. 20 rad/s d. 24 rad/s
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to...
A figure skater is spinning slowly with arms outstretched. He brings his arms in close to his body and his angular velocity changes by a factor of 2. By what factor does his moment of inertia change, and why?
A 45 kg figure skater is spinning on the toes of her skates at 0.50 rev/s...
A 45 kg figure skater is spinning on the toes of her skates at 0.50 rev/s . Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 kg , 20 cm average diameter, 160 cm tall) plus two rod-like arms (2.5 kg each, 71 cm long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to...