Question

A 0.40-kg iron horseshoe, just forged and very hot is dropped into 1.25 L of water...

A 0.40-kg iron horseshoe, just forged and very hot is dropped into 1.25 L of water in a 0.28-kg iron pot initially at 20.0?C. The value of specific heat for iron is 450 J/kg?C? , and for water is 4186 J/kg?C? If the final equilibrium temperature is 25.0 ?C, Determine the initial temperature of the hot horseshoe.

Homework Answers

Answer #1

given
m_horseshoe = 0.4 kg
m_water = 1.25 kg
m_Iron = 0.28 kg

let T is the initial tempearture of iron horseshoe

use,

Heat lost by iron horseshoe = Hwat gained by water + Iron pot

m_horseshoe*C_iron*(T - 25) = m_water*C_water*(25 - 10) + m_Iron*C_Iron*(25 - 20)

0.4*450*(T - 25) = 1.25*4186*5 + 0.28*450*5

0.4*450*T - 0.4*450*25 = 1.25*4186*5 + 0.28*450*5

T = (0.4*450*25 + 1.25*4186*5 + 0.28*450*5)/(0.4*450)

= 174 degrees celsius <<<<<<<------Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hot iron horseshoe ( mass = 0.40kg ) is dropped into 0.00135 m3 of water...
A hot iron horseshoe ( mass = 0.40kg ) is dropped into 0.00135 m3 of water in a .930kg iron pot initially at 20.0 0C. If the final equilibrium temperature is 25.0 0C. What was the initial temperature of the hot horseshoe? ( specific heat of iron = 0.11kcal/kg 0C or 450J/kg 0C
A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket...
A 0.26 kg iron horseshoe that is initially at 787 ◦C is dropped into a bucket containing 20 kg of water at 34◦C. What is the final equilibrium temperature? Neglect any energy transfer to or from the surroundings and assume the specific heat of iron is 448 J/kg · ◦ C . The specific heat of water is 4186 J/kg · ◦ C . Answer in units of ◦C
A freshly-forged iron horseshoe, with a mass of 0.399 kg is dropped into a 0.234 kg...
A freshly-forged iron horseshoe, with a mass of 0.399 kg is dropped into a 0.234 kg iron pot which contains 1.27 kg of water at 20.1 oC. After the horseshoe, pot and water reach thermal equilibrium they have a temperature of 29.6 oC. 1. Assuming the pot and the water was in thermal equilibrium before the horseshoe entered the water, calculate the combined amount of heat gained by the pot and water as they cool the horseshoe. 2. Calculate the...
A 0.440 kg iron horseshoe that is initially at 555°C is dropped into a bucket containing...
A 0.440 kg iron horseshoe that is initially at 555°C is dropped into a bucket containing 18.1 kg of water at 24.0°C. What is the final equilibrium temperature (in °C)? Neglect any heat transfer to or from the surroundings. Do not enter units.
A hot lump of 47.6 g of iron at an initial temperature of 50.8 °C is...
A hot lump of 47.6 g of iron at an initial temperature of 50.8 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water given that the specific heat of iron is 0.449 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 37.8 g of iron at an initial temperature of 51.3 °C is...
A hot lump of 37.8 g of iron at an initial temperature of 51.3 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water given that the specific heat of iron is 0.449 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 44.5 g of iron at an initial temperature of 74.5 °C is...
A hot lump of 44.5 g of iron at an initial temperature of 74.5 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water given that the specific heat of iron is 0.449 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 46.0 g of iron at an initial temperature of 91.5 °C is...
A hot lump of 46.0 g of iron at an initial temperature of 91.5 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water given that the specific heat of iron is 0.449 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 38.038.0 g of iron at an initial temperature of 79.7 °C79.7 °C...
A hot lump of 38.038.0 g of iron at an initial temperature of 79.7 °C79.7 °C is placed in 50.0 mL H2OH2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the iron and water, given that the specific heat of iron is 0.449 J/(g·°C)?0.449 J/(g·°C)? Assume no heat is lost to surroundings.
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT