Question

A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg....

A student sits on a freely rotating stool holding two dumbbells, each of mass 2.98 kg. When his arms are extended horizontally, the dumbbells are 0.94 m from the axis of rotation and the student rotates with an angular speed of 0.752 rad/s. The moment of inertia of the student plus stool is 2.79 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.308 m from the rotation axis.

(a) Find the new angular speed of the student.

(b) Find the kinetic energy of the rotating system BEFORE he pulls the dumbell inward.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.91 kg...
A student sits on a freely rotating stool holding two dumbbells, each of mass 2.91 kg (see figure below). When his arms are extended horizontally (Figure a), the dumbbells are 1.03 m from the axis of rotation and the student rotates with an angular speed of 0.758 rad/s. The moment of inertia of the student plus stool is 2.61 kg · m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.297 m...
A student sits on a freely rotating stool holding two weights, each of mass 2.93 kg....
A student sits on a freely rotating stool holding two weights, each of mass 2.93 kg. When his arms are extended horizontally, the weights are 1.10 m from the axis of rotation and he rotates with an angular speed of 0.754 rad/s. The moment of inertia of the student plus stool is 2.93 kg·m2 and is assumed to be constant. The student pulls the weights inward horizontally to a position 0.296 m from the rotation axis. (a) Find the new...
A student sits on a rotating stool holding two 6.0 kg k g  objects. When...
A student sits on a rotating stool holding two 6.0 kg k g  objects. When his arms are extended horizontally, the objects are 1.3 m m from the axis of rotation and he rotates with an angular speed of 2.7 rad/s r a d / s . The moment of inertia of the student plus stool is 3.3 kg⋅m2 k g ⋅ m 2 and is assumed to be constant.If the student pulls in the two objects horizontally to...
A student sits on a rotating stool holding two 4.0 kg objects. When his arms are...
A student sits on a rotating stool holding two 4.0 kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation, and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg·m2 and is assumed to be constant. The student then pulls the objects horizontally to 0.20 m from the rotation axis. (a) Find the new angular speed of the student. rad/s...
A student sits on a rotating stool holding two 2.7-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 2.7-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.43 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a rotating stool holding two 2.8-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 2.8-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.50 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a rotating stool holding two 3.8-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 3.8-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.33 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a rotating stool holding two 3.5-kg objects. When his arms are extended...
A student sits on a rotating stool holding two 3.5-kg objects. When his arms are extended horizontally, the objects are 1.0 m from the axis of rotation and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the student plus stool is 3.0 kg · m2 and is assumed to be constant. The student then pulls in the objects horizontally to 0.23 m from the rotation axis. (a) Find the new angular speed of the...
A student sits on a rotating chair holding two 6.0kg masses. When his arms are extended...
A student sits on a rotating chair holding two 6.0kg masses. When his arms are extended horizontally, the masses are 1.0 m from the axis of rotation, and he rotates with an angular speed of 0.75 rad/s. The moment of inertia of the students plus stool is 6.0 kg m2 and is assumed to be constant. The student pulls the masses horizontally to a 0.30m from the axis of rotation. (a) Find the new angular speed of the student.   (b)...
A student on a piano stool rotates freely with an angular speed of 2.92 rev/s. The...
A student on a piano stool rotates freely with an angular speed of 2.92 rev/s. The student holds a 1.50-kg mass in each outstretched arm, 0.752 m from the axis of rotation. The combined moment of inertia of the student and the stool, ignoring the two masses, is 5.48 kg*m^2, a value that remains constant. As the student pulls his arms inward, his angular speed increases to 3.41 rev/s. A) How far are the masses from the axis of rotation...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT