Question

An iguana launches itself off the edge of a table using a spring. The spring in...

An iguana launches itself off the edge of a table using a spring. The spring in the launcher has a spring constant of 500 N/m, the combined mass of the box and the iguana is 4.0kg. The coefficient of kinetic friction between the box and the table is 0.3. If the spring is initially compressed a distance of 75.0cm and the iguana is initally 6.5 m away from the end of the table, how fast will the iguana be moving when it reaches the end of the table?

Homework Answers

Answer #1

The body diagram of iguana can be shown as,

Here normal force N is,

friction force f is,

  

and the spring force is,

  

Thus the acceleration of iguana can be calculated as,

The initial velocity of iguana is 0 and distance covered is 6.5 m. Thus the final velocity can be calculated as,

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Box 1 of mass 2 kg is pressed against a spring with spring constant 600 N/m...
Box 1 of mass 2 kg is pressed against a spring with spring constant 600 N/m that is initially compressed by 0.5 m. The spring launches box 1 which then slides along a frictionless surface until it collides with box 2 (initially at rest) with mass 3 kg. They stick together, slide over a patch of sticky spilled soda with coefficient of kinetic friction 0.6 and length 1.2 m. Then, they fall off a cliff of height 3 m. How...
A box with mass M=10 kg is on a table with coefficient of friction μ=0.1. The...
A box with mass M=10 kg is on a table with coefficient of friction μ=0.1. The box starts moving with velocity V=10 m/s toward a spring with the spring which is fixed on a wall at the end of the table and has a spring constant k=1 N/m. The box reaches the spring after moving distance d=10 cm on the table. a) Find the velocity u=? of the box when it reaches the spring? b) What is the maximum compression...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 34.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 6.00 m up the incline from A, the block is moving up the incline at a speed of 6.45 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
An ?=20.0 g object is held against the free end of a spring of constant ?=25.0...
An ?=20.0 g object is held against the free end of a spring of constant ?=25.0 N/m that is compressed a distance ?=10.0 cm from its equilibrium length. Once released, the object slides ?1=1.15 m across the tabletop and eventually lands ?2=1.03 m from the edge of the table on the floor, as shown in the figure. Calculate the coefficient of friction ? between the table and the object. The sliding distance includes the compression of the spring, and the...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 35.0 ∘ (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 7.95 m up the incline from A, the block is moving up the incline at a speed of 5.75 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A 1.8 kg block at rest on a table is attached to a spring of spring...
A 1.8 kg block at rest on a table is attached to a spring of spring constant 1.1 N/m that is parallel to the table top. The spring is initially unstretched. A constant 27.9 N force is applied, causing the spring to stretch. Determine the speed of the block after it has moved 0.2 m from equilibrium if 1. the tabletop is frictionless 2. the coefficient of kinetic friction is 0.24
A block of mass m = 4.5 kg is attached to a spring with spring constant...
A block of mass m = 4.5 kg is attached to a spring with spring constant k = 610 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 29° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.13. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 31.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 4.10 m up the incline from A, the block is moving up the incline at a speed of 6.85 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch...
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch a 2.9 kg box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT