Question

A beam of electrons is shot from left to right (+x direction) at a speed of...

A beam of electrons is shot from left to right (+x direction) at a speed of 3 x 105 m/s through a pair of plates that are 3 cm apart and are uniformly charged. They produce a force of 4.8 x 10–17 N upward on the electron (+y direction).   So that our results are unambiguous, vectors pointing from left to right will be called +x, and from bottom to top (along the surface of the paper) will be +y.   Vectors pointing directly out of the paper will be called +z.
    (A) How large is the electric field experienced by the electron?
    (B) How large is the potential difference between the plates?
    (C) What way does the electric field point?
    (D) If the force were produced by electrons sitting on the bottom plate alone, and the beam is 1.5 cm away from the plate, how many electrons would be required?

Homework Answers

Answer #1

Data Given

Speed of electron v= 3 X 105 m/s, Force on Electron F = 4.8 X 10-17 N

Part A) We know that force experienced by a charged particle in uniform electric field

Part B) Potential difference between the plates, given that d = 3 cm

Part C) Direction of electric field

As the force experienced by the electon is in +Y direction i.e Positive plate is the upper one. So direction of electric field is in -Y direction i.e Downwards.

Part D) Using Coulomb's law

where q = ne and e is charge on electron and n is no of electrons

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103...
A beam of electrons is shot into a uniform downward electric field of magnitude 1.10 103 N/C. The electrons have an initial velocity of 1.01 107 m/s, directed horizontally. The field acts over a small region, 5.00 cm in the horizontal direction. (a) Find the magnitude and direction of the electric force exerted on each electron. (b) How does the gravitational force on an electron compare with the electric force? (c) How far has each electron moved in the vertical...
A beam of electrons traveling horizontally with an initial speed of vi = 3.0 x 107...
A beam of electrons traveling horizontally with an initial speed of vi = 3.0 x 107 m/s enters a uniform, vertically upward electric field with magnitude E = 2.0 x 104 N/C between the deflection plates of an oscilloscope, as shown in the figure. The initial velocity of the electrons is perpendicular to the field. The plates are d = 4.0 cm long. Ignoring all forces apart from the electrostatic interactions, calculate the magnitude and direction of the velocity of...
Draw a standard x-y axis system on your paper, with +x pointing to your right and...
Draw a standard x-y axis system on your paper, with +x pointing to your right and +z pointing out of the paper. A proton is traveling to the right (+x direction) at 5 x 106 m/s. What is the magnetic field (magnitude and direction) A. 1 cm to the left (-x direction) of the proton? B. 1 cm above (+y direction) the proton? C. 1 cm in front of plane of your paper (+z direction)? D. 1 cm to the...
Suppose an electron beam travels to the right at a speed of 4.8?10^6 ?/?. (a) If...
Suppose an electron beam travels to the right at a speed of 4.8?10^6 ?/?. (a) If there is a uniform electric field pointing upward of 8400 V/m, what value of magnetic field would make the beam travel undeflected through that region? b)What is the direction of the magnetic field if it is perpendicular to the electric field? explain part b berifly thank you!
In the figure, a uniform, upward-pointing electric field E of magnitude 2.50×103 N/C has been set...
In the figure, a uniform, upward-pointing electric field E of magnitude 2.50×103 N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have length L = 4 cm and separation d = 2.00 cm. Electrons are shot between the plates from the left edge of the lower plate. The first electron has the initial velocity v0, which makes an angle θ=45° with the lower plate and has a...
You are working on a research project in which you must control the direction of travel...
You are working on a research project in which you must control the direction of travel of electrons using deflection plates. You have devised the apparatus shown in the figure below. The plates are of length ℓ = 0.250 m and are separated by a distance d = 1.65 cm. Electrons are fired at vi = 4.90 ✕ 106 m/s into a uniform electric field from the left edge of the lower, positive plate, aimed directly at the right edge...
A beam of protons is moving in the +x direction with a speed of 13 km/s...
A beam of protons is moving in the +x direction with a speed of 13 km/s through a region in which the electric field is perpendicular to the magnetic field. The beam of protons is not deflected in this region. The magnetic field has a magnitude of 0.8 T and points in the +y direction. Therefore, the magnitude of the electric field is 11.570 V/m (= (13 x 10³ m/s) (0.8T)) and the direction is along the negative z-axis. What...
In the figure, a uniform, upward-pointing electric field E of magnitude 3.50×103 N/C has been set...
In the figure, a uniform, upward-pointing electric field E of magnitude 3.50×103 N/C has been set up between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have length L = 4 cm and separation d = 2.00 cm. Electrons are shot between the plates from the left edge of the lower plate. The first electron has the initial velocity v0, which makes an angle θ=45° with the lower plate and has a...
A uniform electric field of magnitude 364 N/C pointing in the positive x-direction acts on an...
A uniform electric field of magnitude 364 N/C pointing in the positive x-direction acts on an electron, which is initially at rest. The electron has moved 3.00 cm. (a) What is the work done by the field on the electron? (b) What is the change in potential energy associated with the electron? (c) What is the velocity of the electron? Magnitude (m/s) ? Direction (+x, -x, -y, +y)?
A beam of charged particles consisting of electron and protons are moving in +x direction and...
A beam of charged particles consisting of electron and protons are moving in +x direction and enter a region of uniform magnetic field in +y direction. If the protons are deflected in radius of 9.75ₓ10-2 m radius, calculate a) The magnitude of the magnetic field b) The radius that electron will be deflected and draw the schematic of the problem. c) The electric field that should be applied so that the protons remain undeflected (both magnitude and direction)