Question

Determine the lens separation and object location for a microscope made from an objective lens of...

Determine the lens separation and object location for a microscope made from an objective lens of focal length +1.1-cm and an eyepiece of focal length +4.0-cm. Arrange the lenses so that a final virtual image is formed 100 cm to the left of the eyepiece and so that the angular magnification is -260 for a person with a near point of 25.

B:Determine the distance between the objective lens and the eyepiece. Express your answer with the appropriate units.

Answer is NOT: 48cm, 47.84 cm, 46.4 cm, 39.448 cm

HELP!!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q 26:  Determine the lens separation and object location for a microscope made from an objective lens...
Q 26:  Determine the lens separation and object location for a microscope made from an objective lens of focal length +0.70-cm and an eyepiece of focal length +4.0-cm. Arrange the lenses so that a final virtual image is formed 100 cm to the left of the eyepiece and so that the angular magnification is -260 for a person with a near point of 25 cm. Part A:  Determine the object distance from the objective lens. Part B: Determine the distance between the...
The focal length of the objective lens in a microscope is 0.270 cm, and an object...
The focal length of the objective lens in a microscope is 0.270 cm, and an object is placed 0.275 cm from the objective. a. How far from the objective lens will the objective image be formed? b. If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) for a person with normal vision. What is the needed focal length of the eyepiece lens if the distance between...
Please explain, walkthrough, and show equations. The focal length of the objective lens in a microscope...
Please explain, walkthrough, and show equations. The focal length of the objective lens in a microscope is 0.270 cm, and an object is placed 0.275 cm from the objective. a. How far from the objective lens will the objective image be formed? b. If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) for a person with normal vision. What is the needed focal length of the...
1. The focal lengths of the objective and the eyepiece of a microscope are 0.50 cm...
1. The focal lengths of the objective and the eyepiece of a microscope are 0.50 cm and 2.0 cm, respectively, and their separation adjusted for minimum eyestrain (with the final image at the viewer's far point) is 6.0 cm. The near point of the person using the microscope is 25 cm and the far point is infinity. a. If the microscope is focused on a small object, what is the distance between the object and the objective lens? b. If...
Build a microscope that can double the size of an object. We need to choose two...
Build a microscope that can double the size of an object. We need to choose two converging lenses from these available lenses with focal lengths 2,4,8, and 12 meters. First choose an objective lens focal length, and a distance to place the object from the lens. Then choose an eyepiece lens focal length and a distance to place the lens from the objective lens. Draw your microscope design including a ray diagram. Your diagram should include: 1. Location and properties...
A compound microscope consists of two converging lenses: an objective lens, and an eyepiece placed 15...
A compound microscope consists of two converging lenses: an objective lens, and an eyepiece placed 15 cm behind it. The microscope magnifies a tiny object 0.25 cm in front of the objective lens, forming an enlarged final image at the near point N = 25 cm of a normal human eye. Part A) The focal length of the eye piece is fe = 5  cm. Neglecting the distance between the human eye and the eyepiece, what is the focal length fo...
I ONLY NEED PART B! A. A compound microscope has an objective lens with a focal...
I ONLY NEED PART B! A. A compound microscope has an objective lens with a focal length of 15 mm and an eyepiece with a focal length of 18 mm. A specimen is placed 1.6 cm away from the objective. At what distance from the objective does the eyepiece need to be so that an image appears approximately at an infinite distance away from the viewer? ANSWER: 25.8 cm B. What is the total magnification of the image in the...
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length...
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length of the objective is 9.00 mm. The distance between the objective and eyepiece is 19.7 cm. The final image formed by the eyepiece is at infinity. Treat all lenses as thin. (a) What is the distance from the objective to the object being viewed? cm (b) What is the magnitude of the linear magnification produced by the objective? ✕ (c) What is the overall...
The tube length in compound microscope is 26 cm. The focal length of the objective lens...
The tube length in compound microscope is 26 cm. The focal length of the objective lens is 2 cm. The clearest image is formed when an object of height 1 mm is placed at a distance of 2.18 cm from the objective lens. Determine: 1. The position of the intermediate image, 2. the focal length of the eye piece, that will place the final image at the near-point, 3. the total magnification of the microscope and the height of the...
The two lenses of a compound microscope are separated by a distance of 19.0 cm. If...
The two lenses of a compound microscope are separated by a distance of 19.0 cm. If the objective lens produces a lateral magnification of 12.5✕ and the overall magnification is 110✕, determine the angular magnification of the eyepiece, the focal length of the eyepiece in cm, and the focal length of the objective lens in cm. (a) the angular magnification of the eyepiece (b) the focal length of the eyepiece in cm. ____cm (c) the focal length of the objective...