Question

If a 10,000 kg mass is place on an Aluminum rod, with original length L0 =...

If a 10,000 kg mass is place on an Aluminum rod, with original length L0 = 25.4 mm, calculate the total strain, epsilon, for the normalized change in the rod's length, once equilibrium is reached.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Experimental data: Length L0 of the cold rod (measured with a meter stick): 600 +/- 1...
Experimental data: Length L0 of the cold rod (measured with a meter stick): 600 +/- 1 mm Cross-sectional diameter d of the rod (measured with a caliper): 6.1 +/- 0.1 mm The change in length ∆L after the rod reached its final temperature: 1.04 +/- 0.01 mm The initial temperature of the rod (the room temperature): 22 +/- 1 ̊C The final temperature of the rod shown by the thermometer: 93 +/- 1 ̊C Linear thermal expansion coefficient calculation: 1)...
The uniform thin rod in the figure below has mass M = 2.00 kg and length...
The uniform thin rod in the figure below has mass M = 2.00 kg and length L = 2.87 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration, the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end. HINT An illustration shows the horizontal initial position and vertical final position...
An aluminum rod is 22.5 cm long at 20°C and has a mass of 350 g....
An aluminum rod is 22.5 cm long at 20°C and has a mass of 350 g. If 13,000 J of energy is added to the rod by heat, what is the change in length of the rod in mm? I have tried this at least 3 times with help...and my answer is very close...but still not right.
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 2.7 seconds. Change of angular momentum in the spinning rod Mass (Kg) Moment of Inertial of...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 2.7 seconds. If we replace the 300-gram falling weight with the 2 Kg weight, it takes...
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged...
A uniform rod AB of length 7.2 m and mass M = 3.8 kg is hinged at A and held in equilibrium by a light cord. A load W = 22 N hangs from the rod at a distance d so that the tension in the cord is 80 N . Part A) Determine the vertical force on the rod exerted by the hinge. Part B)Determine the horizontal force on the rod exerted by the hinge. Part C) Determine d...
What is the change in length of a metal rod with an original length of 4...
What is the change in length of a metal rod with an original length of 4 m, a coefficient of thermal expansion of 0.00002/ ° C, and a temperature change of 30° C? 1. 2.4 mm 2. 12 mm 3. 1.2 mm 4. 24 mm Determine the number of electrons passing through a point in the wire in 8 minutes when the current is 10 A. a. 3 * 1016 electrons b. none of these c. 4,800 electrons d. 1.6...
We have a rod-shaped space station of length 1419 m and mass 8.35 x 10^6 kg,...
We have a rod-shaped space station of length 1419 m and mass 8.35 x 10^6 kg, which can change its length (kind of like an old-fashioned telescope), without changing its overall mass. Suppose that the station is initially rotating at a constant rate of 1.82 rpm. If the length of the rod is reduced to 1.82 m, what will be the new rotation rate of the space station? A. 8.7 rpm B. 2.32 rpm C. 7.25 rpm D. 2.9 rpm
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 3.7 seconds. !!!! If we replace the 300-gram falling weight with the 2 Kg weight, it...
Consider a thin rod of length L=2.58m and mass m1=1.27 kg, and a hollow (empty) sphere...
Consider a thin rod of length L=2.58m and mass m1=1.27 kg, and a hollow (empty) sphere of radius R=0.16 m and mass of m2=0.82 kg. Sphere is at one end of the rod and the other end of the rod is fixed and oscillate like a pendulum (simple harmonic oscillations, SHM) with small-angle oscillations. When ? ?? ?????, ???? ≈ ?. a) Derive a second order differential equation for this pendulum to confirm the oscillation is SHM.(b) Compare the above...