Question

A bullet with mass m1 = 3.00 g is fired into a wooden block of mass...

A bullet with mass m1 = 3.00 g is fired into a wooden block of mass m2 = 1.00 kg, that hangs like a pendulum. The bullet is embedded in the block (complete inelastic collision). The block (with the bullet embedded in it) goes h = 30.0 cm high after collision. Calculate the speed of the bullet before it hit the block.

Homework Answers

Answer #1

v = speed of bullet before collision

V = speed of block-bullet combination after collision

m1 = mass of bullet = 3 g = 0.003 kg

m2 = mass of block = 1 kg

using conservation of momentum

m1v = (m1 + m2) V

v = (m1 + m2) V / m1 eq-1

using conservation of energy

kinetic energy at bottom = Potential energy at Top

(0.5) (m1 + m2) V2 = (m1 + m2) g h

V2 = 2 gh

V2 = 2 (9.8) (0.30)

V = 2.42 m/s

Using eq-1

v = (m1 + m2) V / m1  

v = (0.003 + 1) (2.42)/0.003

v = 809.1 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg...
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg which then compresses a spring (k=100N/m by a distance of x=0.1 before coming to rest. the bullet remains embedded in the wooden block. ignore friction between the block and table. a) what is initial speed of the bullet? b) calculate total kinetic energy of the bullet block-system immediately before and after the collision. is the collision between the bullet and the block elastic or...
A bullet of mass 4.5 g is fired horizontally into a 2.4 kg wooden block at...
A bullet of mass 4.5 g is fired horizontally into a 2.4 kg wooden block at rest on a horizontal surface. The bullet is embedded in the block. The speed of the block immediately after the bullet stops relative to it is 2.7 m/s. At what speed is the bullet fired?
A bullet of mass 6.00 g is fired horizontally into a wooden block of mass 1.29...
A bullet of mass 6.00 g is fired horizontally into a wooden block of mass 1.29 kg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.210. The bullet remains embedded in the block, which is observed to slide a distance 0.290 m along the surface before stopping. What was the initial speed of the bullet?
5. A bullet with a mass 0.850 g is fired in to a hanging block which...
5. A bullet with a mass 0.850 g is fired in to a hanging block which is free to swing (recall ballistic pendulum). Mass of the hanging block is 6.4 kg. The bullet comes to rest as it is fired to the block and the block + bullet then swing upward vertically displacing the center of mass of the system by 7. 2 cm before the system comes momentarily to rest at the end of the arc. What is the...
A bullet of mass 4.00 gg is fired horizontally into a wooden block of mass 1.14...
A bullet of mass 4.00 gg is fired horizontally into a wooden block of mass 1.14 kgkg resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.170. The bullet remains embedded in the block, which is observed to slide a distance 0.270 mm along the surface before stopping. Part A What was the initial speed of the bullet?
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
A 5.50 g bullet is fired horizontally into a 1.40 kg wooden block resting on a...
A 5.50 g bullet is fired horizontally into a 1.40 kg wooden block resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.200. The bullet remains embedded in the block, which is observed to slide 0.230 m along the surface before stopping. Find the initial speed of the bullet.
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits...
A 10 g bullet is fired with 450 m/s into a 10 kg block that sits at rest on a wooden table 20 cm from the edge of the table. The bullet gets embedded in the block (perfectly inelastic collision). The block, with the embedded bullet, then slides to the edge of the table and drops down with some initial velocity while leaving the edge of the table. The coefficient of kinetic friction between the block and the surface of...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 151 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 81.0 cm, what was the speed of the bullet at impact with the block?
A 0.0111-kg bullet is fired straight up at a falling wooden block that has a mass...
A 0.0111-kg bullet is fired straight up at a falling wooden block that has a mass of 3.34 kg. The bullet has a speed of 759 m/s when it strikes the block. The block originally was dropped from rest from the top of a building and had been falling for a time t when the collision with the bullet occurs. As a result of the collision, the block (with the bullet in it) reverses direction, rises, and comes to a...