Question

A parent isotope has a half-life τ1/2 = 104yr = 3.15 × 1011sec. Among the daughters...

A parent isotope has a half-life τ1/2 = 104yr = 3.15 × 1011sec. Among the daughters the greatest half-life is 20yr. Others are less than a year. At t = 0 one has 1020 parent nuclei but no daughters. (a) At t = 0 what is the activity (decays/sec) of the parent isotope? (b) How long does it take for the population of the 20yr isotope to reach approximately 97% of its equilibrium value? (c) At t = 104yr how many nuclei of the 20yr isotope are present? Assume that none of the decays leading to the 20yr isotope is branched.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has...
The radioactive isotope 234Pa has a half-life of 6.70 h. A sample containing this isotope has an initial activity (t = 0) of 35.0µCi. Calculate the number of nuclei that decay in the time interval between t1 = 7.0 h and t2 = 14.0 h. ___________ Nuclei
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hours. A sample containing this isotope has an initial activity at (t=0) of 1.50e-12 Bq. Calculate the number of nuclei that will decay in the time interval between t1=10 hours and t2=20 hours Answer is 4.60e16 but I'm not sure how. Thanks and please show work
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has...
The radioactive isotope 198Au has a half-life of 64.8 hr. A sample containing this isotope has an initial activity (t = 0) of 1.5x 10^12 Bq. Calculate the number of nuclei that decay in the time interval between t1 = 10 hr and t2 = 12 hr. Please show and explain work, and do not use calculus to solve it.
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has...
The radioactive isotope Gold-198 has a half-life of 64.80 hrs. A sample containing this isotope has an initial activity of 40.0 μCi. Calculate the number of nuclei that will decay in the time interval from 10 hrs to 12 hrs.[10 marks]
The half-life of a radioactive isotope represents the average time it would take half of a...
The half-life of a radioactive isotope represents the average time it would take half of a collection of this type of nucleus to decay. For example, you start with a sample of 1000 Oxygen-15 (15O) nuclei, which has a half-life of 122 seconds. After 122 seconds, half of the 15O nuclei will have decayed into Nitrogen-15 (15N) nuclei. After another 122s, half of the remaining Oxygen nuclei will have also decayed, and so on. Suppose you start with 4.00×103 15O...
A radioactive isotope has a half-life of 72.0 min. A sample is prepared that has an...
A radioactive isotope has a half-life of 72.0 min. A sample is prepared that has an initial activity of 1.40×1011 Bq. Q1: How many radioactive nuclei are initially present in the sample? Q2: How many are present after 72.0 min? Q3: What is the activity after 72.0 min? Q4: How many are present after 144 min? Q5: What is the activity after 144 min?
Boron-12, an unstable nucleus, undergoes the following decay process. The half-life for this beta decay is...
Boron-12, an unstable nucleus, undergoes the following decay process. The half-life for this beta decay is 20.2 milliseconds and the atomic mass of Boron-12 is 12.0143521 u. .a) What is the binding energy per nucleon for Boron-12? (5 pts) .b) A 275 g sample of this isotope of Boron contains how many nuclei? (1 pt) .c) If you started with a 275 g sample of Boron-12 at time t = 0, how many nuclei of this isotope would be left...
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has...
The radioactive isotope thorium 234 has a half-life of approximately 578 hours. If a sample has an initial mass of 64 mg, a function that models the mass in mg after t hours is a(t) =   The initial mass will decay to 12 mg after ______ hours Radioactive decay equation: a(t) = a0⋅2 ^ (−t / h) a0 = starting amount a(t) = amount after t hours h = half life in hours
The radioactive isotope 32P decays by first-order kinetics and has a half-life = 14.3 days. How...
The radioactive isotope 32P decays by first-order kinetics and has a half-life = 14.3 days. How many atoms of a 1.0000 ug sample of 32P would decay in 1.0000 second? (Assume 1 decay per atom.)
Actually a HISTORY question: what tactics does Einhard use to portray Charlemagne in "Life of Charlemagne"...
Actually a HISTORY question: what tactics does Einhard use to portray Charlemagne in "Life of Charlemagne" and what tactics does Procipius use to describe Justinian in a positive light in the "Nika Riots"? Ive posted both excerpts. "Life of Charlemagne" Charles the Great, (Charlemagne in French) reigned 768-814 as king of the Franks and the most important ruler of the Carolingian Dynasty, conquering lands in what is now Germany, France, Spain, and Italy. On Christmas Day 800 C.E., Pope Leo...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT