Question

An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s.

(a) Calculate the amplitude of the motion. ____m

(b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s

Answer #1

An object with mass 2.3 kg is executing simple harmonic motion,
attached to a spring with spring constant 330 N/m . When the object
is 0.020 m from its equilibrium position, it is moving with a speed
of 0.50 m/s . Part A Calculate the amplitude of the motion. Part B
Calculate the maximum speed attained by the object.

An object with mass 2.8 kg is executing simple harmonic motion,
attached to a spring with spring constant 320 N/m . When the object
is 0.021 m from its equilibrium position, it is moving with a speed
of 0.65 m/s . Calculate the amplitude of the motion. Calculate the
maximum speed attained by the object.

An object with mass 3.8 kg is executing simple harmonic motion,
attached to a spring with spring constant 260 N/mN/m . When the
object is 0.017 mm from its equilibrium position, it is moving with
a speed of 0.65 m/s .
Calculate the amplitude of the motion.
Calculate the maximum speed attained by the object.

An object with mass 3.6 kg is executing simple harmonic motion,
attached to a spring with spring constant 320 N/m . When the object
is 0.025 m from its equilibrium position, it is moving with a speed
of 0.40 m/s.
Part A: Calculate the amplitude of the motion.
Part B: Calculate the maximum speed attained by the object.

Calculate the amplitude of the motion.
Calculate the maximum speed attained by the object.
An object with mass 2.4 kg is executing simple harmonic motion,
attached to a spring with spring constant 260 N/m . When the object
is 0.024 m from its equilibrium position, it is moving with a speed
of 0.65 m/s .

A block is attached to a horizontal spring with a spring
constant of 5.0 kg s?
2.
The block is displaced
0.5m from equilibrium and released (see the figure below). The
block executes simple harmonic motion
with a period of 4.0 s .Assuming that the block is moving on a
frictionless surface, and the spring is of
negligible mass.
a. Calculate the mass of the block?
b. Determine the velocity of the block 1.0 seconds after it is
released?
The...

An object of mass of 2.7 kg is attached to a spring with a force
constant of k = 280 N/m.
At t = 0, the object is observed to be 2.0 cm from its equilibrium
position with a speed of
55 cm/s in the -x direction. The object undergoes simple harmonic
motion “back and
forth motion” without any loss of energy.
(a) Sketch a diagram labeling all forces on the object and
calculate the maximum
displacement from equilibrium of...

A 0.450 kg object attached to a spring with a force constant of
8.00 N/m vibrates in simple harmonic motion with an amplitude of
12.0 cm. (Assume the position of the object is at the origin at
t = 0.)
(a) Calculate the maximum value (magnitude) of its speed and
acceleration.
___cm/s
___cm/s2
(b) Calculate the speed and acceleration when the object is 9.00 cm
from the equilibrium position.
___cm/s
___cm/s2
(c) Calculate the time interval required for the object...

A 0.580-kg object attached to a spring with a force constant of
8.00 N/m vibrates in simple harmonic motion with an amplitude of
13.0 cm. (Assume the position of the object is at the origin at
t = 0.)
(a) Calculate the maximum value of its speed.
cm/s
(b) Calculate the maximum value of its acceleration.
cm/s2
(c) Calculate the value of its speed when the object is 11.00 cm
from the equilibrium position.
cm/s
(d) Calculate the value of...

A 0.560-kg object attached to a spring with a force constant of
8.00 N/m vibrates in simple harmonic motion with an amplitude of
12.6 cm. (Assume the position of the object is at the origin at
t = 0.)
(a) Calculate the maximum value of its speed.
cm/s
(b) Calculate the maximum value of its acceleration.
cm/s2
(c) Calculate the value of its speed when the object is 10.60 cm
from the equilibrium position.
cm/s
(d) Calculate the value of...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 40 minutes ago

asked 45 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago