Question

A 4 kg block is sliding at an initial speed of 10 m/s across a surface,...

A 4 kg block is sliding at an initial speed of 10 m/s across a surface, encountering a constant friction force of 9 N. How much work is done on the block after it slides 20 cm?

How fast is the block moving after sliding 20 cm?

What's the total distance the block travels before coming to rest?

What is the average power of friction on the block over the time it takes the block to come to rest?

What was the instantaneous power of friction on the block after it slid the first 20 cm?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3) A 3 kg block is sliding at an initial speed of 9 m/s across a...
3) A 3 kg block is sliding at an initial speed of 9 m/s across a surface, encountering a constant friction force of 10 N. How much work is done on the block after it slides 25 cm? Correct, computer gets: -2.50 J Hint: Does the block gain or lose energy during this process? What sign does this imply for the work done on it? 4) How fast is the block moving after sliding 25 cm? Correct, computer gets: 8.91...
A 2.0 kg block at rest is accelerated uniformly across a floor to a speed of...
A 2.0 kg block at rest is accelerated uniformly across a floor to a speed of 10 m/s in 3.0 s. The coefficient of kinetic friction between the block on the floor is 0.15. a. How much work is done on the block by the accelerating force in the 3.0s interval? b. What is the instantaneous power due to that force at the end of the interval? c. What is the average power done by the force throughout the interval?
A block of 1 kg, initially launched with a speed of 4 m/s rolls across a...
A block of 1 kg, initially launched with a speed of 4 m/s rolls across a horizontal table surface over a distance of 3 m before coming to a stop, due to friction. I am not specifying μk, but I am telling you that μs < 1. Next the block is attached to a horizontal, unstretched spring of spring force constant k = 10 N/m, and given the same launching speed, on the same (horizontal) table surface. The other end...
A 1.0 kg block of wood is to be launched across a slippery floor by a...
A 1.0 kg block of wood is to be launched across a slippery floor by a compresssed spring. The stiffness constant of the spring is 100 N/m, and the spring is initially compressed by 0.50 meters. If the block slides 10 meters before coming to rest, what is the coefficient of sliding friction? If the block were to slide 0.50 meters - the very same distance the spring was compressed - what would be the coefficient of sliding friction?
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring...
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring whose spring constant is 320 N/m. Unstretched, the spring is 20.0 cm long. The block causes the spring to compress to a length of 12.5 cm as the block temporarily comes to rest. The coefficient of kinetic friction between the block and the horizontal surface is 0.25. a) How much work is done by the spring as it brings the block to rest? b)...
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a...
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a spring with spring constant k = 273 N/m by 36.3 cm. It is released from rest so it then slides along the horizontal surface shown. This time, there is friction on the horizontal surface, with a coefficient of friction between the block and surface of μk = 0.11. In addition, there is a steady wind blowing to the right, exerting a constant 6.7 N...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of 7.3m/s. It collides inelastically with mass m2=1.7kg and the two blocks stick together. They then slide down a frictionless incline with a Height 95cm. How fast are they going when they reach the bottom of the incline? Part B. If the coefficient of kinetic friction, uk is 0.15 along the surface at the bottom of the ramp. What distance will the blocks side before...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at an angle of 25.3 ∘ with the horizontal. The coefficient of kinetic friction between the block and the ramp is 0.87. Use energy conservation to find the distance the block slides before coming to rest.
The speed of a block (weight= 10N) sliding across a horizontal ice surface decreases at the...
The speed of a block (weight= 10N) sliding across a horizontal ice surface decreases at the rate of 1.5 m/s^2 . whats The coefficient of kinetic friction between the ice amd the block?
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0...
A 6.0 kg block is sliding on a leve, frictionless surface at a speed of 5.0 m/s when it undergoes a head-on, perfectly inelastic collision with a 4.0 kg block that is initially at rest on the top of a frictionless, 2.0 m high inclined plane. A) What is the speed of the combined blocks when they reach the bottom of the incline? B) If the ground at the bottom of the incline is level, and if the coefficient of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT