Question

A +20 ?C point charge is placed 32 cm from an identical +20 ?C charge. How...

A +20 ?C point charge is placed 32 cm from an identical +20 ?C charge. How much work would be required for an external force to move a +0.70 ?C test charge from a point midway between them to a point 13 cm closer to either of the charges?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A +45 μC point charge is placed 38 cm from an identical +45 μC charge. How...
A +45 μC point charge is placed 38 cm from an identical +45 μC charge. How much work would be required for an external force to move a +0.60 μC test charge from a point midway between them to a point 12 cm closer to either of the charges?
A point charge ? = 10^−15 C is placed 20 cm from the centre of a...
A point charge ? = 10^−15 C is placed 20 cm from the centre of a grounded metal ball (the electric potential of the ball is 0 V) with radius 10 cm. a) Using the image charge method, show that an image charge −0.5? and the point charge Q together are able to generate zero electric potential on the surface of the ball. Using a diagram, show the relative position of the image charge and the point charge Q. b)...
1. Two identical charges, each -8.00 x 10-5 C, are separated by a distance of 25.0...
1. Two identical charges, each -8.00 x 10-5 C, are separated by a distance of 25.0 cm. Find the electric force between them? 2. What is the electric force exerted on a test charge of 3.86 x 10-5 C if it is placed in an electric field of magnitude 1.75 x 104 N/C? 3. Find the resistance of 134 m of No. 20 copper wire at 20
Consider a charge of -0.3 C which is moved from a point in space at electric...
Consider a charge of -0.3 C which is moved from a point in space at electric potential V=3 volts to one at V=1 volts. The charge begins at rest and ends at rest. a)Along the way, does the average electric field point more or less toward the final point, or more or less away from it, on average? Justify your answer. b) Along the way, does the average electric force point more or less toward the final point, or more...
5. Two identical metal spheres are placed 15.0 cm apart. A charge of 6.00 µC is...
5. Two identical metal spheres are placed 15.0 cm apart. A charge of 6.00 µC is placed on one sphere while a charge of −2.00 µC is placed upon the other. What is the force on each sphere? If the two spheres are brought together and touched and then separated to their original separation, what will be the force on each sphere? Answer: F12 =4.80 N attractive     q = 2.00 μC           F12 = 1.60 N repulsive 7. Three charges q1...
A point charge q1 (6 nC) is is placed 3 cm away from the origin on...
A point charge q1 (6 nC) is is placed 3 cm away from the origin on the positive x axis and another point charge q2 (-4nc) is placed 3 cm away from the origin on the negative y axis. If an electron is placed at (0, 5). What is the total force acting on the electron? Please include a picture and a detailed explanation.
Two small identical balls carrying charges - 5 nC and 13 nC are placed 40 cm...
Two small identical balls carrying charges - 5 nC and 13 nC are placed 40 cm apart. If the two spheres brought together and touched and then returned to their original positions. The force experienced by them would be 400 nN                    600 nN    900 nN    800 nN
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at...
Three point charges are placed on the x-axis. A charge of +2.0 μC is placed at the origin, -2.0 μC to the right at x = 50 cm, and +4.0 μC at the 100 cm mark. a. Find the net electric force (magnitude and direction) that acts on the charge at the origin. b. Find the net electric field (magnitude and direction) at x = 25 cm. c. Find the net electric force (magnitude and direction) on a charge Q...
The electric potential at a distance of 20.0 cm from a point charge is +1.0 kV...
The electric potential at a distance of 20.0 cm from a point charge is +1.0 kV (assuming V = 0 at infinity). Is the point charge positive or negative? At what distance is the potential +2.0 kV? How much work is required to move an electron from the +1.0 kV position to the +2.0 kV position?
1.) An electric charge q1 = 10 μC remains located at the origin of a coordinate...
1.) An electric charge q1 = 10 μC remains located at the origin of a coordinate system. A second electrical charge q2 = 20 μC is moved from point to point. (a) How much work is required by an external force to move the second charge along the x-axis from point (1 m, 0) to (2m, 0)? (b) What is the electric potential at the point (1 m, 0) due to the charge at the origin? (c) What is the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT