Question

5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed...

5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed isothermally against a constant external pressure of 2.0 atm, to a final pressure of 2.0 atm. Calculate W; Q; U; and H in Joules.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm...
5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm undergoes a two-stage transformation. For each of the stages described in the following list, Calculate the final pressure as well as q, w, ∆U, ∆H and ∆S. a) The gas is expanded isothermally and reversibly until the volume triple. b) then, the temperature is raised to T=2000 oC at the constant volume. Note: R= 8.314 j/mol.K or 0.082 lt.atm/mol.K, 1lt.atm= 101.325 joule
6. An ideal monatomic gas initially at 26.85 K and 3.250 bar is added to a...
6. An ideal monatomic gas initially at 26.85 K and 3.250 bar is added to a 1.750 L vessel. Assuming that the system consists of the ideal gas alone, calculate the values of Vf, Tf, Pf, w, q, ΔU, and ΔH for each of the following processes. Construct a table for each part listing the initial and final value of V, T, and P and the value of w, q, ΔU, and ΔH.
One mole of an ideal gas is compressed at a constant temperature of 55 oC from...
One mole of an ideal gas is compressed at a constant temperature of 55 oC from 16.5 L to 12.8 L using a constant external pressure of 1.6 atm. Calculate w, q, ΔH and ΔS for this process. w = (?) kJ q = (?) kJ ΔH = (?) kJ ΔS = (?) J/(mol*K)
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and 1 atm. (a) What is its initial internal energy? _____ kJ (b) Find its final internal energy and the work done by the gas when 420 J of heat are added at constant pressure. final internal energy ________kJ work done by the gas _______kJ (c) Find the same quantities when 420 J of heat are added at constant volume. finale internal energy ________kJ work...
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar...
One mole of an ideal gas expands reversibly and isothermally from 10. bar to 1.0 bar at 298.15K. (i)Calculate the values of w, q, ∆U and ∆H? (ii)Calculate w if the gas were to have expanded to the same final state against a constant pressure of 1 bar.
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm...
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm ; the volume of the gas changes from 3.10×10−2 m3 to 4.60×10−2 m3 . Part A Calculate the initial temperature of the gas. Part B Calculate the final temperature of the gas. Part C Calculate the amount of work the gas does in expanding. Part D Calculate the amount of heat added to the gas. Part E Calculate the change in internal energy of...
One mole of an ideal monatomic gas is compressed irreversibly from 2.00 atmto 6.00 atmwhile being...
One mole of an ideal monatomic gas is compressed irreversibly from 2.00 atmto 6.00 atmwhile being cooled from 400. K to 300. K. Calculate ?U, ?H, and ?S for this process.
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The initial pressure and temperature are 1.00 atm and 300 K. The final pressure is 4.00 atm. ? = 8.314 J/mol.K , ????????? = 1.4, ??????????? = 1.67 and 1 atm = 1.013 × 10^5 Pa. mol.K (a) Is the gas monatomic or diatomic? (b) What is the final temperature? (c) How many moles are in the gas?
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350...
A heat engine composed of 1.6 moles of an ideal, monotonic gas is initially at 350 K and 1x10^5 Pa. The first step is an isothermal expansion to a pressure of 5x10^4 Pa. Second, the gas is compressed at constant pressure back to the inital volume. Finally the gas returns, at constant volume to the initial state. What is the total work done by the gas during this cycle? What is the efficiency of this cycle?
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT